Cargando…

Mechanisms underlying microbial symbiosis /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Oliver, Kerry M., Russell, Jacob A.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, 2020.
Colección:Advances in insect physiology ; v. 58.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Mechanisms Underlying Microbial Symbiosis
  • Copyright
  • Contents
  • Contributors
  • Chapter One: Mechanisms underlying microbial symbiosis
  • 1. Introduction
  • 2. Technological advances in the history of insect-symbiont study
  • 3. Symbiont cultivation and the �omics revolution usher in the mechanistic era
  • 4. Chapter summaries
  • 5. Conclusions
  • Acknowledgements
  • References
  • Chapter Two: Host-symbiont specificity in insects: Underpinning mechanisms and evolution
  • 1. Introduction
  • 2. Vertical transmission
  • 2.1. Vertical transmission of intracellular symbionts
  • 2.1.1. Ovarial transmission
  • 2.1.2. Milk-gland transmission
  • 2.2. Vertical transmission of extracellular symbionts
  • 2.2.1. Coprophagy
  • 2.2.2. Egg-smearing
  • 2.2.3. Capsule transmission
  • 2.3. Partner choice in insect-microbe symbiosis with vertical transmission
  • 3. Horizontal symbiont transmission in animals and plants
  • 3.1. The legume-rhizobium symbiosis
  • 3.2. The squid-Vibrio fischeri symbiosis
  • 4. Horizontal transmission of symbionts in insects
  • 4.1. The bean bug-Burkholderia symbiosis
  • 4.2. The bean bug-Burkholderia symbiosis is highly specific
  • 4.3. Partner choice mechanisms in Riptortus pedestris
  • 4.3.1. The gut constricted region as a partner choice apparatus
  • 4.3.2. Corkscrew flagellar motility
  • 4.3.3. Midgut closure stimulated by symbiont colonization
  • 4.3.4. Competition-based selection in the gut
  • 5. Concluding remarks
  • Acknowledgements
  • Conflict of interest
  • References
  • Chapter Three: Symbiont-mediated degradation of dietary carbon sources in social herbivorous insects
  • 1. Introduction
  • 2. Termites
  • 2.1. Diet
  • 2.2. Diversity of lower termite gut microbiota
  • 2.2.1. Protists
  • 2.2.2. Bacteria and archaea
  • 2.3. Digestion of cellulose and hemicelluloses
  • 2.3.1. Protists
  • 2.3.2. The discovery of endogenous cellulases
  • 2.3.3. Degradation of cellulose/hemicelluloses by protists
  • 2.3.4. Degradation of cellulose/hemicellulose by bacteria
  • 2.4. Lignin degradation
  • 2.5. Bacterial acetogenesis
  • 2.6. The importance of O2 consumption in termite guts
  • 2.7. Summary
  • 3. Honeybees
  • 3.1. Diet
  • 3.2. Diversity of the gut microbiota
  • 3.3. Digestion of complex carbohydrates
  • 3.3.1. Inference of carbohydrate metabolism via metagenomics
  • 3.3.2. Inference of microbial metabolism and host nutrient acquisition via metabolomics
  • 3.4. The importance of oxygen consumption in honeybee guts
  • 3.5. Summary
  • 4. Ants
  • 4.1. Diet
  • 4.1.1. Non-recalcitrant diets-Plant and insect exudate feeding
  • 4.1.2. Recalcitrant diets
  • 4.2. Fungus-growing ants
  • 4.2.1. Fungus-growing ants and their fungal garden
  • 4.2.2. Leaf-cutter ants and their entomoplasmatales gut symbionts
  • 4.3. Cephalotes ants
  • 4.3.1. Diet of Cephalotes ants
  • 4.3.2. The diverse gut bacterial community of Cephalotes ants