Mechanisms underlying microbial symbiosis /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Academic Press,
2020.
|
Colección: | Advances in insect physiology ;
v. 58. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Mechanisms Underlying Microbial Symbiosis
- Copyright
- Contents
- Contributors
- Chapter One: Mechanisms underlying microbial symbiosis
- 1. Introduction
- 2. Technological advances in the history of insect-symbiont study
- 3. Symbiont cultivation and the �omics revolution usher in the mechanistic era
- 4. Chapter summaries
- 5. Conclusions
- Acknowledgements
- References
- Chapter Two: Host-symbiont specificity in insects: Underpinning mechanisms and evolution
- 1. Introduction
- 2. Vertical transmission
- 2.1. Vertical transmission of intracellular symbionts
- 2.1.1. Ovarial transmission
- 2.1.2. Milk-gland transmission
- 2.2. Vertical transmission of extracellular symbionts
- 2.2.1. Coprophagy
- 2.2.2. Egg-smearing
- 2.2.3. Capsule transmission
- 2.3. Partner choice in insect-microbe symbiosis with vertical transmission
- 3. Horizontal symbiont transmission in animals and plants
- 3.1. The legume-rhizobium symbiosis
- 3.2. The squid-Vibrio fischeri symbiosis
- 4. Horizontal transmission of symbionts in insects
- 4.1. The bean bug-Burkholderia symbiosis
- 4.2. The bean bug-Burkholderia symbiosis is highly specific
- 4.3. Partner choice mechanisms in Riptortus pedestris
- 4.3.1. The gut constricted region as a partner choice apparatus
- 4.3.2. Corkscrew flagellar motility
- 4.3.3. Midgut closure stimulated by symbiont colonization
- 4.3.4. Competition-based selection in the gut
- 5. Concluding remarks
- Acknowledgements
- Conflict of interest
- References
- Chapter Three: Symbiont-mediated degradation of dietary carbon sources in social herbivorous insects
- 1. Introduction
- 2. Termites
- 2.1. Diet
- 2.2. Diversity of lower termite gut microbiota
- 2.2.1. Protists
- 2.2.2. Bacteria and archaea
- 2.3. Digestion of cellulose and hemicelluloses
- 2.3.1. Protists
- 2.3.2. The discovery of endogenous cellulases
- 2.3.3. Degradation of cellulose/hemicelluloses by protists
- 2.3.4. Degradation of cellulose/hemicellulose by bacteria
- 2.4. Lignin degradation
- 2.5. Bacterial acetogenesis
- 2.6. The importance of O2 consumption in termite guts
- 2.7. Summary
- 3. Honeybees
- 3.1. Diet
- 3.2. Diversity of the gut microbiota
- 3.3. Digestion of complex carbohydrates
- 3.3.1. Inference of carbohydrate metabolism via metagenomics
- 3.3.2. Inference of microbial metabolism and host nutrient acquisition via metabolomics
- 3.4. The importance of oxygen consumption in honeybee guts
- 3.5. Summary
- 4. Ants
- 4.1. Diet
- 4.1.1. Non-recalcitrant diets-Plant and insect exudate feeding
- 4.1.2. Recalcitrant diets
- 4.2. Fungus-growing ants
- 4.2.1. Fungus-growing ants and their fungal garden
- 4.2.2. Leaf-cutter ants and their entomoplasmatales gut symbionts
- 4.3. Cephalotes ants
- 4.3.1. Diet of Cephalotes ants
- 4.3.2. The diverse gut bacterial community of Cephalotes ants