|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1155407636 |
003 |
OCoLC |
005 |
20231120010453.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
200527s2020 enka ob 001 0 eng d |
040 |
|
|
|a YDX
|b eng
|e rda
|e pn
|c YDX
|d OPELS
|d OCLCF
|d EBLCP
|d MYG
|d OCLCO
|d OCLCQ
|d OCLCO
|d SFB
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1156031451
|
020 |
|
|
|a 9780128226797
|q (electronic bk.)
|
020 |
|
|
|a 012822679X
|q (electronic bk.)
|
020 |
|
|
|z 9780128224113
|
020 |
|
|
|z 0128224118
|
035 |
|
|
|a (OCoLC)1155407636
|z (OCoLC)1156031451
|
050 |
|
4 |
|a TA460
|
082 |
0 |
4 |
|a 620.166
|2 23
|
100 |
1 |
|
|a Campbell, John,
|d 1938-
|e author.
|
245 |
1 |
4 |
|a The mechanisms of metallurgical failure :
|b the origin of fracture /
|c John Campbell
|
264 |
|
1 |
|a Kidlington, Oxford, United Kingdom ;
|a Cambridge, MA :
|b Butterworth-Heinemann, an imprint of Elsevier,
|c [2020]
|
264 |
|
4 |
|c �2020
|
300 |
|
|
|a 1 online resource (xix, 299 pages) :
|b color illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
347 |
|
|
|b PDF
|
504 |
|
|
|a Includes bibliographical references and index
|
505 |
0 |
|
|a Front Cover -- THE MECHANISMS OF METALLURGICAL FAILURE -- THE MECHANISMS OF METALLURGICAL FAILURE -- Copyright -- Dedication -- Contents -- Preface -- Acknowledgments -- Introduction -- 1 -- The fracture of liquids -- 1.1 Theoretical strength of liquids -- 1.1.1 Classical continuum theory -- 1.1.2 Classical bubble nucleation -- 1.1.3 Homogeneous nucleation -- 1.1.3.1 Heterogeneous nucleation -- 1.1.4 Nucleation conditions for shrinkage pores -- 1.1.5 Joint gas and shrinkage conditions -- 1.1.6 Pseudo-heterogeneous nucleation of pores
|
505 |
8 |
|
|a 1.2 Experimental demonstration of hydrostatic tensions in liquids -- 1.3 Nonclassical pore formation mechanisms -- 1.3.1 High energy radiation -- 1.3.2 Preexisting suspension of bubbles -- 1.4 Entrainment processes -- 1.4.1 Entrainment of bifilms -- 1.4.1.1 Visual evidence for bifilms -- 1.4.1.2 Surface turbulence -- 1.4.2 Weber Number We -- 1.4.3 Froude number Fr -- 1.4.4 Reynolds number Re -- 1.4.5 Oxide skins from melt charge materials -- 1.4.6 Pouring -- 1.4.7 The critical fall height -- 1.4.8 The oxide lap from surface flooding -- 1.4.9 Oxide lap as a confluence weld
|
505 |
8 |
|
|a 1.4.10 The oxide flow tube -- 1.4.11 Microjetting -- 1.4.12 Entrainment of bubbles -- 1.4.12.1 Bubble trails -- 1.4.12.2 Bubble damage -- 1.4.13 Other entrainment defects -- 1.4.13.1 Extrinsic inclusions -- 1.4.13.2 Flux and slag inclusions -- 1.4.14 Furling and unfurling -- 1.4.14.1 Inflation by gas -- 1.4.14.2 Expansion by solidification shrinkage (3-D strain) -- 1.4.14.3 Transgranular straightening (flattening) by dendrite growth -- 1.4.14.4 Intergranular straightening by grains -- 1.4.14.5 Straightening (flattening) by intermetallics and second phases
|
505 |
8 |
|
|a 1.4.14.6 Flattening by rigid flat intermetallic or second phase -- 1.4.14.7 Opening by 1-D cooling strain -- 1.4.14.8 Opening under service stress -- 1.4.14.8.1 Rate of unfurling -- 1.4.14.8.2 Variations in unfurling behavior -- 1.4.15 Detrainment -- 1.4.15.1 Detrainment techniques take a variety of forms -- 1.4.16 Deactivation of entrained films -- 1.4.16.1 Loss of gas -- 1.4.16.2 Closing of bifilms by pressure -- 1.4.16.3 Bonding by diffusion reaction -- 1.4.16.4 Bonding by liquid binder -- 1.4.17 Morphological transformations -- 1.4.18 Soluble, transient films
|
505 |
8 |
|
|a 1.4.19 Liquid Oxide Entrainment (inclusion shape control) -- 1.4.20 Nonprotective and unstable oxides -- 1.5 Entrainment avoidance -- 1.6 The quest for clean steels -- 1.6.1 Ingot casting -- 1.6.2 Continuous casting -- 1.6.2.1 Nozzle design -- 1.6.3 Secondary remelting processes -- 1.6.3.1 Vacuum induction melting (VIM) -- 1.6.3.2 Vacuum arc remelting (VAR) -- 1.6.3.3 Electroslag remelting (ESR) -- 1.6.3.4 Commercial thoughts -- 1.6.4 Shaped castings -- 1.7 Potential for quality assurance -- 2 -- Fracture in the liquid/solid state -- 2.1 Interdendritic flow
|
588 |
0 |
|
|a Online resource (retrieved from ScienceDirect, Dec. 14, 2020); title from PDF title page
|
650 |
|
0 |
|a Metals
|x Fracture.
|
650 |
|
0 |
|a Fracture mechanics.
|
650 |
|
0 |
|a Metal castings.
|
650 |
|
6 |
|a M�etaux
|x Rupture.
|0 (CaQQLa)201-0028001
|
650 |
|
6 |
|a M�ecanique de la rupture.
|0 (CaQQLa)201-0028000
|
650 |
|
6 |
|a Pi�eces moul�ees.
|0 (CaQQLa)201-0020696
|
650 |
|
7 |
|a Fracture mechanics
|2 fast
|0 (OCoLC)fst00933536
|
650 |
|
7 |
|a Metal castings
|2 fast
|0 (OCoLC)fst01017535
|
650 |
|
7 |
|a Metals
|x Fracture
|2 fast
|0 (OCoLC)fst01018129
|
776 |
0 |
8 |
|i Print version
|z 0128224118
|z 9780128224113
|w (OCoLC)1136958772
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128224113
|z Texto completo
|