Gene regulatory networks (GRNS) /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, MA :
Academic Press,
2020.
|
Colección: | Current topics in developmental biology ;
v. 139. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Gene Regulatory Networks
- Copyright
- Contents
- Contributors
- Preface
- Chapter One: A gene regulatory network for cell fate specification in Ciona embryos
- 1. Introduction
- 2. Basic properties for the gene regulatory network in early ascidian embryos
- 2.1. Regulatory genes
- 2.2. Initial conditions for the gene regulatory network
- 2.3. Outputs of the gene regulatory network
- 2.4. Potentially unique properties of the gene regulatory network in early ascidian embryos
- 3. The gene regulatory network accounts for changes of gene expression in space and time
- 3.1. The initial set up in the 16-cell embryo by maternal factors
- 3.2. Specific gene expression in the 32-cell embryo
- 3.3. Specific gene expression at the 64-cell stage and thereafter
- 3.3.1. Specification of endodermal fate
- 3.3.2. Fate specification of mesenchymal cells
- 3.3.3. Fate specification of muscle cells and adult heart precursors
- 3.3.4. Fate specification of the notochord and the posterior neural plate
- 3.3.5. Epidermal cells
- 3.3.6. Cells for the lateral neural plate and its border
- 3.3.7. Cells for the anterior neural plate and its border
- 4. Perspectives
- 3. ``Pre-patterning��: Polarizing the limb bud axes upstream of morphogenetic SHH signaling
- 4. Establishment of AER-FGF signaling is linked dorso-ventral and proximo-distal axis patterning
- 5. The self-regulatory limb bud signaling system coordinately controls antero-posterior and proximo-distal axis patternin ...
- 6. Propagation and termination of the self-regulatory limb bud signaling system
- 7. A Turing-type mechanism controls the definitive periodic pattern of digit rays
- 8. Brief outlook
- Acknowledgments
- References