HYDRAULIC FRACTURING CHEMICALS AND FLUIDS TECHNOLOGY
Petroleum engineers continue to need cost saving and environmentally sustainable products and methods for today's hydraulic fracturing operations. Hydraulic Fracturing Chemicals and Fluid Technology, Second Edition, continues to deliver an easy-to-use manual of fluid formulations to meet specif...
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
[S.l.] :
GULF PROFESSIONAL,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Hydraulic Fracturing Chemicals and Fluids Technology
- Copyright
- Contents
- Preface to the second edition
- Preface to the rst edition
- How to use this book
- Index
- Bibliography
- Acknowledgments
- 1 General aspects
- 1.1 Functional categories of hydraulic fracturing chemicals
- 1.2 Stresses and fractures
- 1.2.1 Fracture initialization pressure
- 1.2.2 Pressure decline analysis
- 1.3 Comparison of stimulation techniques
- 1.3.1 Action of a fracturing uid
- 1.3.2 Stages in a fracturing job
- 1.4 Simulation methods
- 1.4.1 Productivity
- 1.4.2 Fracture propagation
- 1.4.3 Proppants
- 1.4.4 Fluid loss
- 1.4.5 Foam uid
- 1.4.6 Discharge control
- 1.5 Testing
- 1.5.1 Proppant placement
- 1.5.2 Slickwater fracturing
- 1.5.3 Erosion
- 1.5.4 Fluid leakoff
- 1.5.5 Damaged well
- 1.5.6 Crosslinked uids
- 1.5.7 Phase trapping
- 1.5.8 Water imbibition
- 1.6 Special applications
- 1.6.1 Coiled tubing fracturing
- Hydrajet fracturing
- 1.6.2 Tight gas
- 1.6.3 Shale gas
- 1.6.4 Coalbed methane
- 1.7 Shale reservoirs
- 1.8 Hydraulic fracturing with nanoparticles
- 1.8.1 Wellbore sealant using nanoparticles
- References
- 2 Fluid types
- 2.1 Comparison of different techniques
- 2.2 Expert systems for assessment
- 2.3 Oil-based systems
- 2.4 Foam-based fracturing uids
- 2.4.1 Foam types
- 2.4.2 Shale gas fracturing using a foam-based fracturing uid
- 2.4.3 Dry foams
- 2.5 Utilization of hydraulic fracturing uids
- 2.5.1 Chemical degradation of PAM during hydraulic fracturing
- 2.6 Improved thermal stability
- Furfural degradation
- 2.7 Acid fracturing
- 2.7.1 Encapsulated acids
- 2.7.2 In situ formation of acids
- 2.7.3 Fluid loss
- 2.7.4 Gel breaker for acid fracturing
- 2.8 Special problems
- 2.8.1 Corrosion inhibitors
- 2.8.2 Iron control in fracturing
- 2.8.3 Enhanced temperature stability
- 2.8.4 Chemical blowing
- 2.8.5 Frost-resistant formulation
- 2.8.6 Formation damage in gas wells
- 2.9 Characterization of fracturing uids
- 2.9.1 Rheologic characterization
- 2.9.2 Zirconium-based crosslinking agent
- 2.9.3 Oxidative gel breaker
- 2.9.4 Size exclusion chromatography
- 2.9.5 Assessment of proppants
- References
- 3 Thickeners
- 3.1 Nanoparticle-enhanced hydraulic fracturing uids
- Polymers
- pH-responsive thickeners
- Mixed metal hydroxides
- 3.2 Thickeners for water-based systems
- Zirconium-based crosslinking composition
- 3.2.1 Guar
- 3.2.2 Hydroxyethyl cellulose
- 3.2.3 Biotechnologic products
- Gellan gum and wellan gum
- Reticulated bacterial cellulose
- Xanthan gum
- 3.2.4 Viscoelastic formulations
- 3.2.5 Miscellaneous polymers
- Lactide polymers
- Biodegradable formulations
- 3.3 Concentrates
- 3.4 Thickeners for oil-based systems
- 3.4.1 Organic gel aluminum phosphate ester
- 3.4.2 Increasing the viscosity of diesel
- 3.5 Viscoelasticity
- 3.5.1 Viscoelastic thickeners
- 3.5.2 Enhanced shear recovery agents