Compressive sensing in health care /
The focus of the book is on healthcare applications for this technology. --
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Academic Press,
2020.
|
Colección: | Advances in ubiquitous sensing applications for healthcare.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Compressive Sensing in Healthcare
- Copyright
- Contents
- List of contributors
- 1 Compressive sensing theoretical foundations in a nutshell
- 1.1 Introduction
- 1.2 Digital signal acquisition
- 1.3 Vectorial representation of signal
- l1 norm
- l2 norm
- l norm
- Spheres made by different lp norms as distance criterion
- Basis/dictionary
- Orthonormal basis/dictionary
- Frame/ over-complete dictionary
- Alternate/dual frame
- 1.4 Sparsity
- k-sparse signal
- Non-linearity of sparsity
- Sparsity and compressibility
- 1.5 Compressive sensing
- Compressive sensing model
- 1.6 Essential properties of compressive sensing matrix
- 1.6.1 Null space property (NSP)
- The essence of the concept of recovery
- Maximum compression in compressive sensing (lower bound of m)
- 1.6.2 Restricted isometry property
- 1.6.3 Coherence a simple way to check NSP
- Relation between coherence and spark of a matrix
- Coherence approach to RIP
- 1.7 Summary
- 1.A
- Null space property of order 2k
- References
- 2 Recovery in compressive sensing: a review
- 2.1 Introduction
- 2.1.1 Compressive sensing formulation
- 2.2 Criteria required for a compressive sensing matrix
- 2.2.1 Null space property
- Null space property of order k
- 2.2.1.1 Uniqueness theorem [46]
- Maximum compression in compressive sensing
- 2.2.2 Restricted isometry property
- 2.2.3 Coherence property
- 2.2.3.1 Coherence and spark of a matrix
- 2.2.3.2 The upper bound of sparsity level
- 2.3 Recovery
- 2.3.1 Recovery via minimization of l1 norm
- 2.3.2 Greedy algorithms
- 2.3.2.1 Pursuits
- 2.3.2.2 Matching pursuit
- 2.3.2.3 Orthogonal matching pursuit
- 2.3.2.4 Iterative hard thresholding
- 2.4 Summary
- References
- Measure SGini
- 3.5 Summary
- References
- 4 Compressive sensing in practice and potential advancements
- 4.1 Introduction
- 4.2 Compressive sensing theory
- 4.3 Example compressive sensing implementations
- 4.3.1 Compressive sensing in physiological signal monitoring
- In the eld application results
- 4.3.2 Compressive sensing in THEMIS imaging
- In-the- eld application results
- 4.4 Review of CS literature
- 4.4.1 Practical manifestations of theoretical bounds
- 4.5 Advancements in compressive sensing
- 4.5.1 Personalized basis
- Challenges