Diabetes and retinopathy. Volume 2, Computer-aided diagnosis /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam + :
Elsevier,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Diabetes and Retinopathy
- Copyright
- Contents
- Contributors
- Chapter 1: Complementary capabilities of photoacoustic imaging to existing optical ocular imaging techniques
- References
- Chapter 2: Intraretinal fluid map generation in optical coherence tomography images
- 1. Introduction
- 2. Optical coherence tomography: Background and significance
- 3. The classical segmentation approach
- 4. Fluid identification by means of a regional analysis
- 4.1. ROI extraction
- 4.2. Image sampling
- 4.3. Classification
- 4.4. Binary map creation
- 4.5. Color map creation
- 5. Discussion and conclusions
- Acknowledgments
- References
- Chapter 3: Fully automated identification and clinical classification of macular edema using optical coherence tomography ...
- 1. Background and significance
- 2. Computational identification and characterization of the MEs
- 2.1. Region of interest delimitation
- 2.2. Identification of the different types of macular edema
- 3. Results and discussion
- 4. Conclusions
- Acknowledgments
- References
- Chapter 4: Optimal surface segmentation with subvoxel accuracy in spectral domain optical coherence tomography images
- 1. Introduction
- 2. Methods
- 2.1. Problem formulation and energy function
- 2.1.1. Original formulation in regularly sampled space
- 2.1.2. Formulation in irregularly sampled space to achieve subvoxel accuracy
- 2.2. Graph construction
- 2.2.1. Intracolumn edges
- 2.2.2. Intercolumn edges
- 2.2.3. Intersurface edges
- 2.3. Surface recovery from minimum s-t cut
- 3. Experimental methods
- 3.1. Data
- 3.2. Workflow
- 3.2.1. Experiment for subvoxel accuracy
- 3.2.2. Experiment for super-resolution accuracy
- 3.2.3. Cost function design
- 3.2.4. Gradient vector flow
- 3.2.5. Parameter setting
- 4. Results
- 4.1. Results for subvoxel accuracy
- 4.2. Results for super-resolution accuracy
- 5. Discussion and conclusions
- References
- Chapter 5: Analysis of optical coherence tomography images using deep convolutional neural network for maculopathy grading
- 1. Introduction
- 1.1. Macular edema
- 1.2. Age-related macular degeneration
- 1.3. Central serous chorioretinopathy
- 2. Retinal imaging modalities
- 2.1. Optical coherence tomography
- 3. Dataset description
- 4. TU-Net: A deep CNN architecture for maculopathy grading
- 4.1. Preprocessing
- 4.2. Proposed TU-Net architecture
- 5. Results and discussion
- 6. Conclusion
- References
- Chapter 6: Segmentation of retinal layers from OCT scans
- 1. Introduction
- 2. Method
- 2.1. Joint MGRF-based macula: Centred image segmentation
- 2.1.1. Shape model Psp(m)
- 2.1.2. Appearance model
- 2.2. 3D retinal layers segmentation
- 3. Experimental results
- 4. Conclusion
- References
- Chapter 7: Low-complexity computer-aided diagnosis for diabetic retinopathy
- 1. Introduction
- 2. Related work
- 3. Low-complexity CNN for diabetic retinopathy