|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1154535406 |
003 |
OCoLC |
005 |
20231120010451.0 |
006 |
m o d |
007 |
cr un|---aucuu |
008 |
200516s2020 ne o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d YDX
|d OPELS
|d OCLCF
|d UHL
|d OCLCO
|d OCLCA
|d OCLCO
|d OCLCQ
|d N$T
|d K6U
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1154425181
|
020 |
|
|
|a 0128174390
|
020 |
|
|
|a 9780128174395
|q (electronic bk.)
|
020 |
|
|
|z 9780128174388
|
020 |
|
|
|z 0128174382
|
035 |
|
|
|a (OCoLC)1154535406
|z (OCoLC)1154425181
|
050 |
|
4 |
|a RE551
|
082 |
0 |
4 |
|a 617.7/35
|2 23
|
245 |
0 |
0 |
|a Diabetes and retinopathy.
|n Volume 2,
|p Computer-aided diagnosis /
|c edited by Ayman S. El-Baz and Jasjit S. Suri.
|
246 |
3 |
0 |
|a Computer-aided diagnosis
|
260 |
|
|
|a Amsterdam + :
|b Elsevier,
|c 2020.
|
300 |
|
|
|a 1 online resource (248 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Intro -- Diabetes and Retinopathy -- Copyright -- Contents -- Contributors -- Chapter 1: Complementary capabilities of photoacoustic imaging to existing optical ocular imaging techniques -- References -- Chapter 2: Intraretinal fluid map generation in optical coherence tomography images -- 1. Introduction -- 2. Optical coherence tomography: Background and significance -- 3. The classical segmentation approach -- 4. Fluid identification by means of a regional analysis -- 4.1. ROI extraction -- 4.2. Image sampling -- 4.3. Classification -- 4.4. Binary map creation -- 4.5. Color map creation
|
505 |
8 |
|
|a 5. Discussion and conclusions -- Acknowledgments -- References -- Chapter 3: Fully automated identification and clinical classification of macular edema using optical coherence tomography ... -- 1. Background and significance -- 2. Computational identification and characterization of the MEs -- 2.1. Region of interest delimitation -- 2.2. Identification of the different types of macular edema -- 3. Results and discussion -- 4. Conclusions -- Acknowledgments -- References -- Chapter 4: Optimal surface segmentation with subvoxel accuracy in spectral domain optical coherence tomography images
|
505 |
8 |
|
|a 1. Introduction -- 2. Methods -- 2.1. Problem formulation and energy function -- 2.1.1. Original formulation in regularly sampled space -- 2.1.2. Formulation in irregularly sampled space to achieve subvoxel accuracy -- 2.2. Graph construction -- 2.2.1. Intracolumn edges -- 2.2.2. Intercolumn edges -- 2.2.3. Intersurface edges -- 2.3. Surface recovery from minimum s-t cut -- 3. Experimental methods -- 3.1. Data -- 3.2. Workflow -- 3.2.1. Experiment for subvoxel accuracy -- 3.2.2. Experiment for super-resolution accuracy -- 3.2.3. Cost function design -- 3.2.4. Gradient vector flow
|
505 |
8 |
|
|a 3.2.5. Parameter setting -- 4. Results -- 4.1. Results for subvoxel accuracy -- 4.2. Results for super-resolution accuracy -- 5. Discussion and conclusions -- References -- Chapter 5: Analysis of optical coherence tomography images using deep convolutional neural network for maculopathy grading -- 1. Introduction -- 1.1. Macular edema -- 1.2. Age-related macular degeneration -- 1.3. Central serous chorioretinopathy -- 2. Retinal imaging modalities -- 2.1. Optical coherence tomography -- 3. Dataset description -- 4. TU-Net: A deep CNN architecture for maculopathy grading -- 4.1. Preprocessing
|
505 |
8 |
|
|a 4.2. Proposed TU-Net architecture -- 5. Results and discussion -- 6. Conclusion -- References -- Chapter 6: Segmentation of retinal layers from OCT scans -- 1. Introduction -- 2. Method -- 2.1. Joint MGRF-based macula: Centred image segmentation -- 2.1.1. Shape model Psp(m) -- 2.1.2. Appearance model -- 2.2. 3D retinal layers segmentation -- 3. Experimental results -- 4. Conclusion -- References -- Chapter 7: Low-complexity computer-aided diagnosis for diabetic retinopathy -- 1. Introduction -- 2. Related work -- 3. Low-complexity CNN for diabetic retinopathy
|
500 |
|
|
|a 3.1. Mathematical model and architecture
|
650 |
|
0 |
|a Retina
|x Diseases
|x Diagnosis.
|
650 |
|
0 |
|a Diabetes
|x Complications.
|
650 |
1 |
2 |
|a Diabetic Retinopathy
|x diagnosis
|0 (DNLM)D003930Q000175
|
650 |
|
2 |
|a Diabetes Complications
|0 (DNLM)D048909
|
650 |
|
6 |
|a Diab�ete
|x Complications et s�equelles.
|0 (CaQQLa)201-0019983
|
650 |
|
7 |
|a Diabetes
|x Complications
|2 fast
|0 (OCoLC)fst00892153
|
650 |
|
7 |
|a Retina
|x Diseases
|x Diagnosis
|2 fast
|0 (OCoLC)fst01096201
|
700 |
1 |
|
|a Suri, Jasjit S.
|
700 |
1 |
|
|a El-Baz, Ayman S.
|
776 |
0 |
8 |
|i Print version:
|a Suri, Jasjit S.
|t Diabetes and Retinopathy.
|d San Diego : Elsevier, �2020
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128174388
|z Texto completo
|