Cargando…

Diabetes and retinopathy. Volume 2, Computer-aided diagnosis /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Suri, Jasjit S., El-Baz, Ayman S.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam + : Elsevier, 2020.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_on1154535406
003 OCoLC
005 20231120010451.0
006 m o d
007 cr un|---aucuu
008 200516s2020 ne o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d OPELS  |d OCLCF  |d UHL  |d OCLCO  |d OCLCA  |d OCLCO  |d OCLCQ  |d N$T  |d K6U  |d OCLCQ  |d OCLCO 
019 |a 1154425181 
020 |a 0128174390 
020 |a 9780128174395  |q (electronic bk.) 
020 |z 9780128174388 
020 |z 0128174382 
035 |a (OCoLC)1154535406  |z (OCoLC)1154425181 
050 4 |a RE551 
082 0 4 |a 617.7/35  |2 23 
245 0 0 |a Diabetes and retinopathy.  |n Volume 2,  |p Computer-aided diagnosis /  |c edited by Ayman S. El-Baz and Jasjit S. Suri. 
246 3 0 |a Computer-aided diagnosis 
260 |a Amsterdam + :  |b Elsevier,  |c 2020. 
300 |a 1 online resource (248 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Print version record. 
505 0 |a Intro -- Diabetes and Retinopathy -- Copyright -- Contents -- Contributors -- Chapter 1: Complementary capabilities of photoacoustic imaging to existing optical ocular imaging techniques -- References -- Chapter 2: Intraretinal fluid map generation in optical coherence tomography images -- 1. Introduction -- 2. Optical coherence tomography: Background and significance -- 3. The classical segmentation approach -- 4. Fluid identification by means of a regional analysis -- 4.1. ROI extraction -- 4.2. Image sampling -- 4.3. Classification -- 4.4. Binary map creation -- 4.5. Color map creation 
505 8 |a 5. Discussion and conclusions -- Acknowledgments -- References -- Chapter 3: Fully automated identification and clinical classification of macular edema using optical coherence tomography ... -- 1. Background and significance -- 2. Computational identification and characterization of the MEs -- 2.1. Region of interest delimitation -- 2.2. Identification of the different types of macular edema -- 3. Results and discussion -- 4. Conclusions -- Acknowledgments -- References -- Chapter 4: Optimal surface segmentation with subvoxel accuracy in spectral domain optical coherence tomography images 
505 8 |a 1. Introduction -- 2. Methods -- 2.1. Problem formulation and energy function -- 2.1.1. Original formulation in regularly sampled space -- 2.1.2. Formulation in irregularly sampled space to achieve subvoxel accuracy -- 2.2. Graph construction -- 2.2.1. Intracolumn edges -- 2.2.2. Intercolumn edges -- 2.2.3. Intersurface edges -- 2.3. Surface recovery from minimum s-t cut -- 3. Experimental methods -- 3.1. Data -- 3.2. Workflow -- 3.2.1. Experiment for subvoxel accuracy -- 3.2.2. Experiment for super-resolution accuracy -- 3.2.3. Cost function design -- 3.2.4. Gradient vector flow 
505 8 |a 3.2.5. Parameter setting -- 4. Results -- 4.1. Results for subvoxel accuracy -- 4.2. Results for super-resolution accuracy -- 5. Discussion and conclusions -- References -- Chapter 5: Analysis of optical coherence tomography images using deep convolutional neural network for maculopathy grading -- 1. Introduction -- 1.1. Macular edema -- 1.2. Age-related macular degeneration -- 1.3. Central serous chorioretinopathy -- 2. Retinal imaging modalities -- 2.1. Optical coherence tomography -- 3. Dataset description -- 4. TU-Net: A deep CNN architecture for maculopathy grading -- 4.1. Preprocessing 
505 8 |a 4.2. Proposed TU-Net architecture -- 5. Results and discussion -- 6. Conclusion -- References -- Chapter 6: Segmentation of retinal layers from OCT scans -- 1. Introduction -- 2. Method -- 2.1. Joint MGRF-based macula: Centred image segmentation -- 2.1.1. Shape model Psp(m) -- 2.1.2. Appearance model -- 2.2. 3D retinal layers segmentation -- 3. Experimental results -- 4. Conclusion -- References -- Chapter 7: Low-complexity computer-aided diagnosis for diabetic retinopathy -- 1. Introduction -- 2. Related work -- 3. Low-complexity CNN for diabetic retinopathy 
500 |a 3.1. Mathematical model and architecture 
650 0 |a Retina  |x Diseases  |x Diagnosis. 
650 0 |a Diabetes  |x Complications. 
650 1 2 |a Diabetic Retinopathy  |x diagnosis  |0 (DNLM)D003930Q000175 
650 2 |a Diabetes Complications  |0 (DNLM)D048909 
650 6 |a Diab�ete  |x Complications et s�equelles.  |0 (CaQQLa)201-0019983 
650 7 |a Diabetes  |x Complications  |2 fast  |0 (OCoLC)fst00892153 
650 7 |a Retina  |x Diseases  |x Diagnosis  |2 fast  |0 (OCoLC)fst01096201 
700 1 |a Suri, Jasjit S. 
700 1 |a El-Baz, Ayman S. 
776 0 8 |i Print version:  |a Suri, Jasjit S.  |t Diabetes and Retinopathy.  |d San Diego : Elsevier, �2020 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128174388  |z Texto completo