|
|
|
|
LEADER |
00000cam a2200000Mu 4500 |
001 |
SCIDIR_on1152054192 |
003 |
OCoLC |
005 |
20231120010448.0 |
006 |
m o d |
007 |
cr ||||||||||| |
008 |
200425s2020 cau o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|c EBLCP
|d UKAHL
|d YDX
|d DCT
|d UKMGB
|d OCLCO
|d COO
|d OPELS
|d OCLCF
|d GZM
|d OCLCO
|d COM
|d OCLCQ
|d OPELS
|d OCLCO
|
015 |
|
|
|a GBC036840
|2 bnb
|
016 |
7 |
|
|a 019738507
|2 Uk
|
019 |
|
|
|a 1151813898
|a 1178905124
|a 1204084486
|a 1222775974
|a 1311347880
|a 1311350802
|
020 |
|
|
|a 9780128223093
|q (electronic bk.)
|
020 |
|
|
|a 012822309X
|q (electronic bk.)
|
020 |
|
|
|z 9780128195437
|
020 |
|
|
|z 0128195436
|
035 |
|
|
|a (OCoLC)1152054192
|z (OCoLC)1151813898
|z (OCoLC)1178905124
|z (OCoLC)1204084486
|z (OCoLC)1222775974
|z (OCoLC)1311347880
|z (OCoLC)1311350802
|
050 |
|
4 |
|a TP150.S24
|b C73 2020
|
082 |
0 |
4 |
|a 660/.2804
|2 23
|
100 |
1 |
|
|a Crawley, Frank,
|e author.
|
245 |
1 |
2 |
|a A guide to hazard identification methods.
|
250 |
|
|
|a 2nd ed.
|
264 |
|
1 |
|a San Diego :
|b Elsevier,
|c 2020.
|
300 |
|
|
|a 1 online resource (303 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|2 rdamedia
|
338 |
|
|
|a online resource
|2 rdacarrier
|
500 |
|
|
|a Description based upon print version of record.
|
505 |
0 |
|
|a Intro -- Title page -- Table of Contents -- Copyright -- Foreword -- Acknowledgements -- Disclaimer -- Acronyms and abbreviations -- SI units -- 1: Regulatory framework -- Synopsis -- 1.1 Overview -- 1.2 Background -- 1.3 Features of Seveso III Directive -- Appendix -- 2: A guide to Hazard Identification Methods -- Synopsis -- 2.1 Hazard Identification -- 3: Hazard Studies -- Synopsis -- 3.1 Introduction -- 3.2 Definition -- 3.3 Description -- 3.4 Resource requirements -- 3.5 Timing -- 3.6 Advantages, disadvantages and uncertainties -- 3.7 Applications
|
505 |
8 |
|
|a 4: Hazard and operability study (HAZOP) -- Synopsis -- 4.1 Definition -- 4.2 Description -- 4.3 Resource requirements -- 4.4 Timing -- 4.5 Advantages, disadvantages and uncertainties -- 4.6 Applications -- Other readings -- 5: HAZID -- Synopsis -- 5.1 Precautionary comment -- 5.2 Definition -- 5.3 Description -- 5.4 Resources -- 5.5 Manpower -- 5.6 Timing -- 5.7 Advantages, disadvantages and uncertainties -- 5.8 Methodology -- Appendix -- 6: Task analysis -- Synopsis -- 6.1 Definition -- 6.2 Description -- 6.3 Resources required -- 6.4 Timing -- 6.5 Advantages, disadvantages and uncertainties
|
505 |
8 |
|
|a 6.6 Application -- 7: Layer of Protection Analysis (LOPA) -- Synopsis -- 7.1 Definition -- 7.2 Description -- 7.3 Resource requirements -- 7.4 Timing -- 7.5 Advantages, disadvantages and uncertainties -- 7.6 Example -- Definitions and abbreviations -- 8: Relative ranking -- Synopsis -- 8.1 Definition -- 8.2 Description -- 8.3 Resource requirements -- 8.4 Timing -- 8.5 Advantages, disadvantages and uncertainties -- 8.6 Applications for relative ranking methods -- 8.7 Example of the Dow FEI [1] -- 8.8 Conclusion -- 9: The risk analysis screening tool (RAST) -- Synopsis -- 9.1 Definition
|
505 |
8 |
|
|a 9.2 Description -- 9.3 Resources -- 9.4 Timing -- 9.5 Advantages, disadvantages and uncertainties -- 9.6 Example of a RAST evaluation -- 10: Checklists -- Synopsis -- 10.1 Definition -- 10.2 Description -- 10.3 Resource requirements -- 10.4 Advantages, disadvantages and uncertainties -- 10.5 Applications -- 10.6 Examples -- 11: What if? -- Synopsis -- 11.1 Definition -- 11.2 Description -- 11.3 Resource requirements -- 11.4 Timing -- 11.5 Advantages, disadvantages and uncertainties -- 11.6 Applications
|
505 |
8 |
|
|a 12: Failure modes and effects analysis (FMEA) and failure modes, effects and criticality analysis (FMECA) -- Synopsis -- 12.1 Definition -- 12.2 Description -- 12.3 Resource requirements -- 12.4 Timing -- 12.5 Advantages, disadvantages and uncertainties -- 12.6 Applications -- 13: Fault tree analysis -- Synopsis -- 13.1 Definition -- 13.2 Description -- 13.3 Resource requirements -- 13.4 Timing -- 13.5 Advantages, disadvantages and uncertainties -- 13.6 Failure rate or reliability data and common mode (cause) failure -- 13.7 Example -- 14: Event tree analysis -- Synopsis -- 14.1 Definition -- 14.2 Description.
|
504 |
|
|
|a Includes bibliographical references and index.
|
520 |
|
|
|a A Guide to Hazard Identification Methods, Second Edition provides a description and examples of the most common techniques leading to a safer and more reliable chemical process industry. This new edition revises previous sections with up-to-date, linked sources. Furthermore, new elements include a more detailed account of purpose, Black Swan events, human factors, auditing and QA, more examples and a discussion of major incidents, HAZID and task analysis.
|
650 |
|
0 |
|a Chemical engineering
|x Safety measures.
|
650 |
|
6 |
|a G�enie chimique
|0 (CaQQLa)201-0008929
|x S�ecurit�e
|0 (CaQQLa)201-0373949
|x Mesures.
|0 (CaQQLa)201-0373949
|
650 |
|
7 |
|a Chemical engineering
|x Safety measures
|2 fast
|0 (OCoLC)fst00852920
|
776 |
0 |
8 |
|i Print version:
|a Crawley, Frank
|t A Guide to Hazard Identification Methods
|d San Diego : Elsevier,c2020
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128195437
|x StDnUD
|z Texto completo
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128195437
|z Texto completo
|