Cargando…

Handbook of functionalized nanomaterials for industrial applications /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Hussain, Chaudhery Mustansar (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2020
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Handbook of Functionalized Nanomaterials for Industrial Applications
  • Copyright Page
  • Contents
  • List of contributors
  • Preface
  • 1 Different kinds of functionalized nanomaterial for industrial use nanomaterials
  • 1 Functionalization of nanomaterials for industrial applications: recent and future perspectives
  • 1.1 Introduction
  • 1.2 Nanotrends in industrial development
  • 1.3 Potential of nanomaterials
  • 1.4 What are functionalized nanomaterials?
  • 1.5 The use of functionalized nanomaterials in industry
  • 1.5.1 Food
  • 1.5.2 Energy and environmental sectors
  • 1.5.3 Other applications of engineered nanomaterials
  • 1.6 Current research on nanomaterials
  • 1.7 Recent scientific research in the field of functionalized nanomaterials
  • 1.8 The scientific vision of energy and environmental sustainability
  • 1.9 Recent research in environmental protection and industrial ecology
  • 1.10 Integrated water resource management and human factor engineering
  • 1.11 Groundwater remediation and nanotechnology
  • 1.12 Future research trends in nanotechnology and nanomaterials
  • 1.13 Conclusion and future perspectives
  • References
  • Further reading
  • 2 Mixed-matrix membranes incorporated with functionalized nanomaterials for water applications
  • 2.1 Introduction
  • 2.2 Mixed-matrix membranes incorporated with carbon-based nanomaterials
  • 2.2.1 Carbon nanotubes
  • 2.2.2 Graphene oxide
  • 2.3 Mixed-matrix membranes incorporated with titania-based nanomaterials
  • 2.4 Mixed-matrix membranes incorporated with other nanomaterials
  • 2.5 Adsorptive mixed-matrix membranes for heavy-metal removal
  • 2.6 Conclusion and future remarks
  • References
  • 2 Functionalized nanomaterial for catalysis industry
  • 3 Photocatalytic oxygen evolution reaction for energy conversion and storage of functional nanomaterials
  • 3.1 Introduction.
  • 3.1.1 Structural investigation of CeO2/CdO nanostructures
  • 3.1.2 Fourier transform infrared spectroscopy
  • 3.1.3 Field emission scanning electron microscopy studies
  • 3.1.4 High-resolution transmission electron microscopy studies
  • 3.1.5 Diffuse reflectance spectroscopy studies
  • 3.1.6 Micro-Raman spectroscopy
  • 3.1.7 Photoluminescence spectra
  • 3.1.8 X-ray photoelectron spectroscopy studies
  • 3.1.9 Thermogravimetric analysis
  • 3.1.10 Photocatalytic activity
  • 3.1.11 Degradation of Rhodamine-B using CeO2/CdO heterogeneous catalyst
  • 3.1.12 Photocatalytic degradation of Rhodamine-B dye using CeO2/CdO heterogeneous catalyst (Ce2/Cd1 ratio)
  • 3.1.13 Visible light-induced decomposition of Rhodamine-B using CeO2/CdO heterogeneous catalyst (Ce2/Cd1)
  • 3.1.14 Effect of pH on the photodegradation of Rhodamine-B dye
  • 3.1.15 Effect of irradiation time on the photodegradation of Rhodamine-B dye
  • 3.1.16 Effect of catalyst dose on the photodegradation of Rhodamine-B dye
  • 3.1.17 Effect of initial concentration of Rhodamine-B dye
  • 3.1.18 Removal of Rhodamine-B from urban wastewater
  • 3.1.19 Mechanism of photocatalysis
  • 3.2 Conclusion
  • References
  • 4 Functionalized metal-based nanoelectrocatalysts for water splitting
  • 4.1 Introduction
  • 4.1.1 Fundamentals of water electrolysis
  • 4.1.2 Functionalized nanomaterials as electrocatalysts
  • 4.1.3 HER process
  • 4.1.4 OER process
  • 4.2 Functionalized nanoelectrocatalysts for HER
  • 4.2.1 Pt-based HER catalysts
  • 4.2.2 Nonnoble metal carbides and oxides
  • 4.2.3 Nonnoble metal dichalcagonides and phosphides
  • 4.2.4 Other transition metal nanostructures
  • 4.3 OER catalysts
  • 4.3.1 Noble-metal nanocatalysts
  • 4.3.2 Nonnoble metal nanocatalysts
  • 4.4 Bifunctional electrocatalysts
  • 4.4.1 Noble metal nanocatalysts
  • 4.4.2 Nonnoble metal nanocatalysts.
  • 4.4.3 Intermetallic nonnoble nanocatalysts
  • 4.5 Summary
  • References
  • 5 Functionalized nanographene for catalysis
  • 5.1 Nanographene: an introduction
  • 5.1.1 Interest in nanographene
  • 5.1.2 Chemistry of nanographene
  • 5.1.3 Synthetic methods
  • 5.1.4 Characterization tools
  • 5.1.5 Applications
  • 5.2 Functionalization of nanographene
  • 5.3 Catalytic properties and applications of functionalized nanographene
  • 5.3.1 Catalytic properties
  • 5.3.2 Catalytic applications
  • 5.4 Industrial, environmental, and health issues of nanographene
  • 5.4.1 Industrial issues
  • 5.4.2 Toxicity
  • 5.4.3 Biocompatibility
  • 5.4.4 Sustainability
  • 5.5 Conclusions and future aspects
  • References
  • 3 Functionalized nanomaterials for biomedical, pharmaceutical, agriculture, and agri-food industry Section Function ...
  • 6 Delivery of bioactives using biocompatible nanodelivery technologies
  • 6.1 Introduction
  • 6.2 Fabrication methods of biopolymer-based nanodelivery systems
  • 6.2.1 Nanoprecipitation/desolvation
  • 6.2.1.1 Nanoprecipitation/desolvation of proteins
  • 6.2.1.2 Nanoprecipitation/desolvation of carbohydrates
  • 6.2.2 Coacervation
  • 6.2.3 Layer-by-layer deposition
  • 6.2.3.1 Spherical particle formation through layer-by-layer deposition
  • 6.2.3.2 Nanotube formation through layer-by-layer deposition
  • 6.3 Conclusions
  • References
  • 7 Biopolymer-based nanomaterials for food, nutrition, and healthcare sectors: an overview on their properties, functions, a ...
  • 7.1 Introduction
  • 7.2 Sources, structure, and characteristics
  • 7.2.1 Properties and functions of biopolymers
  • 7.2.2 Properties and functions of nanomaterials
  • 7.2.3 Safety and toxicity of biopolymer-based nanomaterials
  • 7.3 Preparation of biopolymer-based nanomaterials
  • 7.4 Applications of biopolymer-based nanomaterials
  • 7.4.1 Cellulose
  • 7.4.2 Starch.
  • 7.4.3 Chitosan and zein
  • 7.5 Conclusions
  • 7.6 Future perspectives
  • Funding
  • Conflict of interests
  • References
  • Further reading
  • 8 Surface functionalization of PLGA nanoparticles for drug delivery
  • 8.1 Introduction: background and driving forces
  • 8.1.1 Nanoparticles as novel drug delivery systems
  • 8.1.2 Poly(D, L-lactide-co-glycolide) nanoparticles
  • 8.1.3 Structure and properties of PLGA polymers
  • 8.1.4 PLGA nanoparticles production techniques
  • 8.2 Active targeting by surface functionalization of PLGA nanoparticles
  • 8.3 Noncovalent functionalization of PLGA nanoparticles
  • 8.3.1 PEGylated PLGA nanoparticle
  • 8.3.2 Surfactant PLGA nanoparticles
  • 8.3.3 Polyelectrolyte-PLGA nanoparticles
  • 8.3.4 Cell target ligands coupled on the surface of PLGA nanoparticles
  • 8.3.5 Antibody-directed PLGA nanoparticles
  • 8.4 Nucleic acid-functionalized PLGA
  • 8.5 Concluding remarks
  • Acknowledgements
  • References
  • 9 Biomedical-related applications of functionalized nanomaterials
  • 9.1 Introduction
  • 9.2 Functionalized nanoparticles in the biopharmaceutical sector
  • 9.3 Types and synthesis procedures of functionalized nanomaterials
  • 9.3.1 Metal-based nanoparticles
  • 9.3.2 Silica nanoparticles
  • 9.3.3 Carbon nanomaterials
  • 9.4 Immobilization of functionalized nanomaterials in membranes
  • 9.5 Functionalized nanoparticles as drug delivery systems
  • 9.6 Conclusions and future trends
  • Acknowledgments
  • References
  • 10 Functionalized nanomaterials for biomedical and agriculture industries
  • 10.1 Introduction
  • 10.2 Strategies for functionalization of nanomaterials
  • 10.3 Functionalized nanomaterials for biomedical and pharmaceutical applications
  • 10.3.1 Functionalized carbon-based materials for biomedical and pharmaceutical applications
  • 10.3.2 Functionalized metal nanoparticles for biomedical applications.
  • 10.3.3 Functionalized magnetic nanoparticles for biomedical applications
  • 10.3.4 Functionalized polymer-based nanomaterials for biomedical and pharmaceutical applications
  • 10.4 Application of functionalized nanomaterials in agriculture and agroindustry
  • 10.4.1 Impact of functionalized nanomaterials in agriculture
  • 10.4.2 Impact of surface modified, labeled, and conjugated nanomaterials in agriculture
  • 10.5 Conclusion
  • References
  • Further reading
  • 4 Functionalized Nanomaterials for Electronics, Electrical and Energy Industry
  • 11 Functionalized nanomaterials for electronics and electrical and energy industries
  • 11.1 Introduction
  • 11.1.1 Classification of nanomaterials based on dimension
  • 11.1.1.1 Three-dimensional nanostructures
  • 11.1.1.2 Two-dimensional nanostructures
  • 11.1.1.3 One-dimensional nanostructures
  • 11.1.1.4 Zero-dimensional nanostructures
  • 11.1.2 Classification of nanomaterials according to chemical composition
  • 11.1.3 Properties of nanomaterials
  • 11.1.3.1 Thermal property
  • 11.1.3.2 Structural property
  • 11.1.3.3 Optical property
  • 11.1.3.4 Electronic property
  • 11.1.3.5 Magnetic property
  • 11.1.3.6 Mechanical property
  • 11.1.4 Functionalization of nanomaterials
  • 11.1.4.1 Chemical methods
  • 11.1.4.2 Ligand exchange process
  • 11.1.4.3 Grafting of synthetic polymers
  • 11.1.4.4 Miscellaneous methods
  • 11.2 Industrial applications
  • 11.2.1 Applications of functionalized nanomaterials in the electronics industry
  • 11.2.2 Application of functionalized nanomaterials in the electrical industry
  • 11.2.3 Energy applications
  • 11.2.3.1 Role of functionalized nanomaterials in oxygen evolution reaction
  • 11.2.3.2 Role of functionalized nanomaterials in hydrogen evolution reaction
  • 11.2.3.3 Role of functionalized nanomaterials in battery design.