Remote sensing of geomorphology /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
�2020.
|
Edición: | First edition 2020. |
Colección: | Developments in earth surface processes ;
23. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Remote Sensing of Geomorphology
- Copyright
- Contents
- Contributors
- Foreword
- Reference
- Introduction to remote sensing of geomorphology
- Chapter 1: Structure from motion photogrammetric technique
- 1. Introduction
- 1.1. Brief historical summary and state of the art
- 1.2. Reasons for success in geomorphological surveys
- 2. Method
- 2.1. Choosing suitable settings to comply with the application at hand
- 2.1.1. Image quality
- 2.1.2. Ground sampling distance
- 2.1.3. Image network geometry
- 2.1.4. Camera parameter choice during bundle adjustment
- 2.1.5. Referencing: GCP weights and distribution
- 2.1.6. Exterior influences
- 2.2. Accuracy considerations in geomorphological applications
- 2.3. Direct geo-referencing (DG) for flexible UAV applications
- 2.3.1. Achievable accuracies
- 2.3.2. Guidelines for DG applications
- 3. Reconstructing processes across space
- 4. Reconstructing processes in time
- 4.1. Past and real-time reconstruction
- 4.2. Time-lapse imagery for 4D change detection
- 4.2.1. Guidelines for time-lapse SfM photogrammetry
- 5. Final remarks
- References
- Further reading
- Chapter 2: Topo-bathymetric airborne LiDAR for fluvial-geomorphology analysis
- 1. High-resolution topography: Where is the bathymetry?
- 2. Synoptic fluvial bathymetry survey techniques
- 2.1. Topo-bathymetric lidar vs existing approaches
- 2.2. Topo-bathymetric airborne lidar sensors
- 2.3. Survey examples and typical data characteristics
- 3. Controls on depth penetration and surveyable rivers
- 3.1. Theoretical controls on the bathymetric waveform and bottom echo intensity
- 3.2. Results on maximum measurable depth and sensor comparison
- 3.3. Depth uncertainty and detail resolving capability
- 3.4. Surveyable rivers and survey strategy
- 4. Data processing
- 4.1. Water-surface detection, bathymetric classification, and refraction correction
- 4.2. FWF analysis
- 5. Applications in fluvial geomorphology
- 5.1. Multi-scale high-resolution fluvial geomorphology
- 5.2. Coupling with 2D-3D hydraulic modeling
- 5.3. Synoptic channel morphodynamics and sediment budget
- 6. Conclusions and remaining challenges
- 6.1. A priori prediction of depth penetration and river bathymetric cover
- 6.2. Automatic classification on massive lidar datasets
- 6.3. FWF analysis in the context of fluvial environments
- 6.4. Large-scale hydraulic modeling on topo-bathymetric data
- Acknowledgments
- References
- Chapter 3: Ground-based remote sensing of the shallow subsurface: Geophysical methods for environmental applications
- 1. Introduction
- 2. Methods
- 2.1. Geo-electrical (DC resistivity) methods
- 2.2. EMI methods and GPR
- 2.3. Seismics
- 3. Application examples
- 3.1. System structure
- 3.1.1. The Settolo site
- 3.1.2. The Trecate site
- 3.1.3. The Aviano site