Cargando…

Remote sensing of geomorphology /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Tarolli, Paolo, Mudd, Simon Marius
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, �2020.
Edición:First edition 2020.
Colección:Developments in earth surface processes ; 23.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Remote Sensing of Geomorphology
  • Copyright
  • Contents
  • Contributors
  • Foreword
  • Reference
  • Introduction to remote sensing of geomorphology
  • Chapter 1: Structure from motion photogrammetric technique
  • 1. Introduction
  • 1.1. Brief historical summary and state of the art
  • 1.2. Reasons for success in geomorphological surveys
  • 2. Method
  • 2.1. Choosing suitable settings to comply with the application at hand
  • 2.1.1. Image quality
  • 2.1.2. Ground sampling distance
  • 2.1.3. Image network geometry
  • 2.1.4. Camera parameter choice during bundle adjustment
  • 2.1.5. Referencing: GCP weights and distribution
  • 2.1.6. Exterior influences
  • 2.2. Accuracy considerations in geomorphological applications
  • 2.3. Direct geo-referencing (DG) for flexible UAV applications
  • 2.3.1. Achievable accuracies
  • 2.3.2. Guidelines for DG applications
  • 3. Reconstructing processes across space
  • 4. Reconstructing processes in time
  • 4.1. Past and real-time reconstruction
  • 4.2. Time-lapse imagery for 4D change detection
  • 4.2.1. Guidelines for time-lapse SfM photogrammetry
  • 5. Final remarks
  • References
  • Further reading
  • Chapter 2: Topo-bathymetric airborne LiDAR for fluvial-geomorphology analysis
  • 1. High-resolution topography: Where is the bathymetry?
  • 2. Synoptic fluvial bathymetry survey techniques
  • 2.1. Topo-bathymetric lidar vs existing approaches
  • 2.2. Topo-bathymetric airborne lidar sensors
  • 2.3. Survey examples and typical data characteristics
  • 3. Controls on depth penetration and surveyable rivers
  • 3.1. Theoretical controls on the bathymetric waveform and bottom echo intensity
  • 3.2. Results on maximum measurable depth and sensor comparison
  • 3.3. Depth uncertainty and detail resolving capability
  • 3.4. Surveyable rivers and survey strategy
  • 4. Data processing
  • 4.1. Water-surface detection, bathymetric classification, and refraction correction
  • 4.2. FWF analysis
  • 5. Applications in fluvial geomorphology
  • 5.1. Multi-scale high-resolution fluvial geomorphology
  • 5.2. Coupling with 2D-3D hydraulic modeling
  • 5.3. Synoptic channel morphodynamics and sediment budget
  • 6. Conclusions and remaining challenges
  • 6.1. A priori prediction of depth penetration and river bathymetric cover
  • 6.2. Automatic classification on massive lidar datasets
  • 6.3. FWF analysis in the context of fluvial environments
  • 6.4. Large-scale hydraulic modeling on topo-bathymetric data
  • Acknowledgments
  • References
  • Chapter 3: Ground-based remote sensing of the shallow subsurface: Geophysical methods for environmental applications
  • 1. Introduction
  • 2. Methods
  • 2.1. Geo-electrical (DC resistivity) methods
  • 2.2. EMI methods and GPR
  • 2.3. Seismics
  • 3. Application examples
  • 3.1. System structure
  • 3.1.1. The Settolo site
  • 3.1.2. The Trecate site
  • 3.1.3. The Aviano site