Nature-inspired computation and swarm intelligence : algorithms, theory and applications /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Academic Press,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Nature-Inspired Computation and Swarm Intelligence
- Copyright
- Contents
- List of contributors
- About the editor
- Preface
- Acknowledgments
- Part 1 Algorithms
- 1 Nature-inspired computation and swarm intelligence: a state-of-the-art overview
- 1.1 Introduction
- 1.2 Optimization and optimization algorithms
- 1.2.1 Mathematical formulations
- 1.2.2 Gradient-based algorithms
- 1.2.3 Gradient-free algorithms
- 1.3 Nature-inspired algorithms for optimization
- 1.3.1 Genetic algorithms
- 1.3.2 Ant colony optimization
- 1.3.3 Differential evolution
- 1.3.4 Particle swarm optimization
- 1.3.5 Fire y algorithm
- 1.3.6 Cuckoo search
- 1.3.7 Bat algorithm
- 1.3.8 Flower pollination algorithm
- 1.3.9 Other algorithms
- 1.4 Algorithms and self-organization
- 1.4.1 Algorithmic characteristics
- 1.4.2 Comparison with traditional algorithms
- 1.4.3 Self-organized systems
- 1.5 Open problems for future research
- References
- 2 Bat algorithm and cuckoo search algorithm
- 2.1 Introduction
- 2.2 Bat algorithm
- 2.2.1 Algorithmic equations of BA
- 2.2.2 Pulse emission and loudness
- 2.2.3 Pseudocode and parameters
- 2.2.4 Demo implementation
- 2.3 Cuckoo search algorithm
- 2.3.1 Cuckoo search
- 2.3.2 Pseudocode and parameters
- 2.3.3 Demo implementation
- 2.4 Discretization and solution representations
- References
- 3 Fire y algorithm and ower pollination algorithm
- 3.1 Introduction
- 3.2 The re y algorithm
- 3.2.1 Algorithmic equations in FA
- 3.2.2 FA pseudocode
- 3.2.3 Scalings and parameters
- 3.2.4 Demo implementation
- 3.2.5 Multiobjective FA
- 3.3 Flower pollination algorithm
- 3.3.1 FPA pseudocode and parameters
- 3.3.2 Demo implementation
- 3.4 Constraint handling
- 3.5 Applications
- References
- 4 Bio-inspired algorithms: principles, implementation, and applications to wireless communication
- 4.1 Introduction
- 4.2 Selected bio-inspired techniques: principles and implementation
- 4.2.1 Genetic algorithm
- 4.2.2 Differential evolution
- 4.2.3 Particle swarm optimization
- 4.2.4 Bacterial foraging optimization
- 4.3 Application of bio-inspired optimization techniques in wireless communication
- 4.3.1 Bio-inspired techniques for direct modeling application
- 4.3.2 Bio-inspired techniques for inverse modeling application
- 4.3.3 Bio-inspired techniques for mobility management in cellular networks
- 4.3.4 Bio-inspired techniques for cognitive radio-based Internet of Things
- 4.4 Conclusion
- References
- Part 2 Theory
- 5 Mathematical foundations for algorithm analysis
- 5.1 Introduction
- 5.2 Optimization and optimality
- 5.3 Norms
- 5.4 Eigenvalues and eigenvectors
- 5.5 Convergence sequences
- 5.6 Series
- 5.7 Computational complexity
- 5.8 Convexity
- References
- 6 Probability theory for analyzing nature-inspired algorithms
- 6.1 Introduction
- 6.2 Random variables and probability