Mechanics of materials in modern manufacturing methods and processing techniques /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2020.
|
Colección: | Elsevier series in mechanics of advanced materials.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Mechanics of Materials in Modern Manufacturing Methods and Processing Techniques
- Copyright Page
- Contents
- List of contributors
- About the Series editors
- 1 Modeling of metal forming: a review
- 1.1 Introduction
- 1.2 Modeling issues in various metal forming processes
- 1.2.1 Forging
- 1.2.2 Rolling
- 1.2.3 Wire drawing
- 1.2.4 Extrusion
- 1.2.5 Deep drawing
- 1.2.6 Bending
- 1.3 Various modeling techniques
- 1.3.1 Slab method
- 1.3.2 Slip-line field method
- 1.3.3 Visioplasticity
- 1.3.4 Upper bound method
- 1.3.5 Finite difference method
- 1.3.6 Finite element method
- 1.3.7 Meshless method
- 1.3.8 Molecular dynamics simulation
- 1.3.9 Soft computing
- 1.4 Inverse modeling
- 1.5 Modeling of microstructure and surface integrity
- 1.6 A note on multiscale modeling of metal forming
- 1.7 Challenging issues
- 1.8 Conclusion
- References
- 2 Finite element method modeling of hydraulic and thermal autofrettage processes
- 2.1 Introduction
- 2.1.1 Hydraulic autofrettage
- 2.1.2 Swage autofrettage
- 2.1.3 Explosive autofrettage
- 2.1.4 Thermal autofrettage
- 2.1.5 Rotational autofrettage
- 2.2 Numerical modeling of elastic-plastic problems
- 2.2.1 Yield criteria and hardening behavior of the material
- 2.2.1.1 The von Mises yield criterion
- 2.2.1.2 Tresca yield criterion
- 2.2.2 Approaches for numerical modeling of elastic-plastic problems
- 2.3 FEM formulation using updated Lagrangian method
- 2.3.1 Derivation of the weak form of the equilibrium equation
- 2.3.2 Formulation of elemental equations
- 2.3.3 Solution method
- 2.4 Typical results of FEM modeling of hydraulic and thermal autofrettage
- 2.4.1 Results of hydraulic autofrettage
- 2.4.1.1 Results for plane stress condition of hydraulic autofrettage
- 2.4.1.2 Results for plane strain end condition of hydraulic autofrettage
- 2.4.2 Results of thermal autofrettage
- 2.4.2.1 Results for plane stress end condition of thermal autofrettage
- 2.4.2.2 Results for open-ended condition of thermal autofrettage
- 2.5 Conclusion
- References
- 3 Mechanics of hydroforming
- 3.1 Introduction
- 3.2 Modeling of plastic deformation in tube hydroforming
- 3.2.1 Rotationally symmetrical tube expansion
- 3.2.2 Hydroforming of polygonal cross sections
- 3.2.3 Hydroforming of tube branches
- 3.3 Determination of forming limits in tube hydroforming
- 3.3.1 Necking and bursting
- 3.3.2 Wrinkling and buckling
- 3.4 Design of loading paths
- 3.5 Conclusion
- References
- 4 Electromagnetic pulse forming
- 4.1 Process classification
- 4.2 Process principle and major process variants
- 4.2.1 General setup and process principle
- 4.2.2 Major process variants
- 4.2.2.1 Electromagnetic pulse compression
- 4.2.2.2 Electromagnetic pulse expansion
- 4.2.2.3 Electromagnetic pulse forming of flat and preformed sheet metal