Cargando…

Mechanics of materials in modern manufacturing methods and processing techniques /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Silberschmidt, Vadim V.
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2020.
Colección:Elsevier series in mechanics of advanced materials.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Mechanics of Materials in Modern Manufacturing Methods and Processing Techniques
  • Copyright Page
  • Contents
  • List of contributors
  • About the Series editors
  • 1 Modeling of metal forming: a review
  • 1.1 Introduction
  • 1.2 Modeling issues in various metal forming processes
  • 1.2.1 Forging
  • 1.2.2 Rolling
  • 1.2.3 Wire drawing
  • 1.2.4 Extrusion
  • 1.2.5 Deep drawing
  • 1.2.6 Bending
  • 1.3 Various modeling techniques
  • 1.3.1 Slab method
  • 1.3.2 Slip-line field method
  • 1.3.3 Visioplasticity
  • 1.3.4 Upper bound method
  • 1.3.5 Finite difference method
  • 1.3.6 Finite element method
  • 1.3.7 Meshless method
  • 1.3.8 Molecular dynamics simulation
  • 1.3.9 Soft computing
  • 1.4 Inverse modeling
  • 1.5 Modeling of microstructure and surface integrity
  • 1.6 A note on multiscale modeling of metal forming
  • 1.7 Challenging issues
  • 1.8 Conclusion
  • References
  • 2 Finite element method modeling of hydraulic and thermal autofrettage processes
  • 2.1 Introduction
  • 2.1.1 Hydraulic autofrettage
  • 2.1.2 Swage autofrettage
  • 2.1.3 Explosive autofrettage
  • 2.1.4 Thermal autofrettage
  • 2.1.5 Rotational autofrettage
  • 2.2 Numerical modeling of elastic-plastic problems
  • 2.2.1 Yield criteria and hardening behavior of the material
  • 2.2.1.1 The von Mises yield criterion
  • 2.2.1.2 Tresca yield criterion
  • 2.2.2 Approaches for numerical modeling of elastic-plastic problems
  • 2.3 FEM formulation using updated Lagrangian method
  • 2.3.1 Derivation of the weak form of the equilibrium equation
  • 2.3.2 Formulation of elemental equations
  • 2.3.3 Solution method
  • 2.4 Typical results of FEM modeling of hydraulic and thermal autofrettage
  • 2.4.1 Results of hydraulic autofrettage
  • 2.4.1.1 Results for plane stress condition of hydraulic autofrettage
  • 2.4.1.2 Results for plane strain end condition of hydraulic autofrettage
  • 2.4.2 Results of thermal autofrettage
  • 2.4.2.1 Results for plane stress end condition of thermal autofrettage
  • 2.4.2.2 Results for open-ended condition of thermal autofrettage
  • 2.5 Conclusion
  • References
  • 3 Mechanics of hydroforming
  • 3.1 Introduction
  • 3.2 Modeling of plastic deformation in tube hydroforming
  • 3.2.1 Rotationally symmetrical tube expansion
  • 3.2.2 Hydroforming of polygonal cross sections
  • 3.2.3 Hydroforming of tube branches
  • 3.3 Determination of forming limits in tube hydroforming
  • 3.3.1 Necking and bursting
  • 3.3.2 Wrinkling and buckling
  • 3.4 Design of loading paths
  • 3.5 Conclusion
  • References
  • 4 Electromagnetic pulse forming
  • 4.1 Process classification
  • 4.2 Process principle and major process variants
  • 4.2.1 General setup and process principle
  • 4.2.2 Major process variants
  • 4.2.2.1 Electromagnetic pulse compression
  • 4.2.2.2 Electromagnetic pulse expansion
  • 4.2.2.3 Electromagnetic pulse forming of flat and preformed sheet metal