General fractional derivatives with applications in viscoelasticity /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Academic Press,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- General Fractional Derivatives With Applications in Viscoelasticity
- Copyright
- Contents
- Preface
- 1 Special functions
- 1.1 Euler gamma and beta functions
- 1.1.1 Euler gamma function
- 1.1.2 Euler beta function
- 1.2 Laplace transform and properties
- 1.3 Mittag-Lef er function
- 1.4 Miller-Ross function
- 1.5 Rabotnov function
- 1.6 One-parameter Lorenzo-Hartley function
- 1.7 Prabhakar function
- 1.8 Wiman function
- 1.9 The two-parameter Lorenzo-Hartley function
- 1.10 Two-parameter Goren o-Mainardi function
- 1.11 Euler-type gamma and beta functions with respect to another function
- 1.12 Mittag-Lef er-type function with respect to another function
- 1.13 Miller-Ross-type function with respect to function
- 1.14 Rabotnov-type function with respect to another function
- 1.15 Lorenzo-Hartley-type function with respect to another function
- 1.16 Prabhakar-type function with respect to another function
- 1.17 Wiman-type function with respect to another function
- 1.18 Two-parameter Lorenzo-Hartley function with respect to another function
- 1.19 Goren o-Mainardi-type function with respect to another function
- 2 Fractional derivatives with singular kernels
- 2.1 The space of the functions
- 2.1.1 The set of Lebesgue measurable functions
- 2.1.2 The weighted space with the power weight
- 2.1.3 The space of absolutely continuous functions
- 2.1.4 The Kolmogorov-Fomin condition
- 2.1.5 The Samko-Kilbas-Marichev condition
- 2.2 Riemann-Liouville fractional calculus
- 2.2.1 Riemann-Liouville fractional integrals
- 2.2.2 Riemann-Liouville fractional derivatives
- 2.3 Osler fractional calculus
- 2.4 Liouville-Weyl fractional calculus
- 2.4.1 Liouville-Weyl fractional integrals
- 2.4.2 Liouville-Weyl fractional derivatives
- 2.5 Samko-Kilbas-Marichev fractional calculus
- 2.5.1 Samko-Kilbas-Marichev fractional integrals
- 2.5.2 Samko-Kilbas-Marichev fractional derivatives
- 2.6 Liouville-Sonine-Caputo fractional derivatives
- 2.6.1 History of Liouville-Sonine-Caputo fractional derivatives
- 2.7 Liouville fractional derivatives
- 2.8 Almeida fractional derivatives with respect to another function
- 2.9 Liouville-type fractional derivative with respect to another function
- 2.10 Liouville-Gr�unwald-Letnikov fractional derivatives
- 2.10.1 History of the Liouville-Gr�unwald-Letnikov fractional derivatives
- 2.10.2 Concepts of Liouville-Gr�unwald-Letnikov fractional derivatives
- 2.10.3 Liouville-Gr�unwald-Letnikov fractional derivatives on a bounded domain
- 2.11 Kilbas-Srivastava-Trujillo fractional difference derivatives
- 2.12 Riesz fractional calculus
- 2.12.1 Riesz fractional calculus
- 2.12.2 Riesz-type fractional calculus
- 2.12.3 Liouville-Sonine-Caputo-Riesz-type fractional derivatives
- 2.13 Feller fractional calculus