Thermal behaviour and applications of carbon-based nanomaterials /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2020.
|
Colección: | Micro and Nano Technologies Ser.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Thermal Behaviour and Applications of Carbon-Based Nanomaterials
- Thermal Behaviour and Applications of Carbon-Based Nanomaterials: Theory, Methods and Applications
- Copyright
- Contents
- Contributors
- Preface
- 1
- Theory for nanoscale thermal behavior and composites/suspensions
- 1
- Underlying physics and basic approaches to thermal transport in solids
- 1. Introduction
- 2. Microscopic models
- 2.1 Fundamental starting point
- 2.2 Mechanical excitations in periodic lattices
- 2.3 Electronic excitations in periodic lattices
- 3. Levels of description
- 3.1 Landauer-Buttiker
- 3.2 Boltzmann equation for phonons
- 3.3 Boltzmann equation for electrons
- 3.4 Molecular dynamics approaches
- 4. Composite systems
- 4.1 Effective medium approximation
- 5. Open questions
- References
- 2
- Effective medium theory for predictions of the thermal conductivity of multiphase carbon-based nanocomposites: methodologies and applications
- 1. Introduction
- 2. Effective medium theory
- 2.1 Methodology
- 2.2 Case study and discussion
- 2.2.1 Nanoparticle/nanotube (CNT)/polymer nanocomposite
- 2.2.2 Nanoparticle/nanosheet (GNP)/polymer nanocomposites
- 2.2.3 Nanotube (CNT)/nanosheet (GNP)/polymer nanocomposites
- 3. Effective medium theory with percolation effect
- 3.1 Boron nitride (BN)/ultrahigh molecular weight polyethylene (UHMWPE) composite
- 3.2 Aluminum nitride (AlN)/ultrahigh molecular weight polyethylene (UHMWPE) composite
- 3.3 Boron nitride (BN)/aluminum nitride (AlN)/ultrahigh molecular weight polyethylene (UHMWPE) composite
- 4. Summary
- References
- 2
- Experimental methods to investigate heat transfer in nanoscale
- 3
- Characterization of thermal conductivity, diffusivity, specific heat, and interface thermal resistance of carbo ...
- 1. Introduction
- 2. The TET technique for lateral direction thermal characterization
- 2.1 Basic principles of the TET technique and characterization
- 2.2 Differential TET technique
- 2.3 Dual-mode thermal transport uncovered by TET
- 2.4 Extension of the TET: laser-based heating
- 3. The PLTR technique for thickness direction thermal characterization
- 3.1 Basic principles of the PLTR technique and characterization
- 3.2 PLTRII for thickness direction characterization
- 4. Thermal reffusivity theory and application
- 5. Steady state Raman for interface thermal characterization
- 5.1 Basic principles of steady state Raman and thermal characterization
- 5.2 Features and issues of steady state Raman characterization
- 6. Control of Raman in the time and frequency domains
- 6.1 Time-domain differential Raman (TD-Raman) characterization
- 6.2 Frequency resolved Raman (FR-Raman) characterization
- 7. Energy transport-state resolved Raman (ET-Raman)