Cargando…

Gradient-enhanced continuum plasticity /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Voyiadjis, George Z., 1946-
Otros Autores: Song, Yooseob
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2020.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Gradient-Enhanced Continuum Plasticity
  • Copyright Page
  • Dedication
  • Contents
  • About the authors
  • Preface
  • 1 Introduction
  • References
  • 2 Review of experimental observations on the gradient-enhanced continuum plasticity
  • 2.1 Uniaxial tests
  • 2.2 Bending tests
  • 2.3 Torsion tests
  • 2.4 Indentation tests
  • 2.5 Bulge tests of thin film
  • 2.6 Shear tests
  • References
  • 3 Review of theoretical developments on the gradient-enhanced continuum plasticity
  • 3.1 Aifantis theory
  • 3.2 Fleck and Hutchinson theory
  • 3.2.1 Strain gradient plasticity version of J2 deformation theory
  • 3.2.2 Strain gradient plasticity version of the J2 flow theory
  • 3.3 Gudmundson, Gurtin and Anand theory
  • 3.3.1 Irrotational plastic flow
  • 3.3.2 Rotational plastic flow
  • 3.4 Implicit gradient plasticity theory
  • 3.5 Micromorphic approach
  • 3.6 Mechanism-based strain gradient plasticity theory
  • 3.7 Voyiadjis theory
  • 3.8 Other types of theories
  • References
  • 4 Review of numerical approaches using the gradient-enhanced continuum plasticity
  • 4.1 Aifantis theory
  • 4.2 Fleck and Hutchinson theory
  • 4.3 Gudmundson, Gurtin, and Anand theory
  • 4.3.1 Irrotational plastic flow
  • 4.3.2 Rotational plastic flow
  • 4.4 Implicit gradient plasticity theory
  • 4.5 Micromorphic approach
  • 4.6 Mechanism-based strain gradient plasticity theory
  • 4.7 Voyiadjis theory
  • 4.8 Other types of theories
  • References
  • 5 Lower-order strain gradient plasticity theory with variable length scales
  • 5.1 Gradient plasticity theories
  • 5.2 Physical bases
  • 5.3 Applications
  • 5.3.1 Microbending of thin films
  • 5.3.2 Microtorsion of thin wires
  • 5.4 Comparing with experiments
  • 5.5 A nonfixed material length scale
  • References
  • 6 Gradient-enhanced continuum plasticity for small deformations
  • 6.1 Background
  • 6.2 Kinematics
  • 6.3 Grain interior
  • 6.3.1 Principle of virtual power
  • 6.3.2 Laws of thermodynamics
  • 6.3.3 Energetic and dissipative constitutive equations
  • 6.3.4 Free energy and energetic thermodynamic microforces
  • 6.3.5 Dissipation potential and dissipative thermodynamic microforces
  • 6.3.6 Flow rule
  • 6.3.7 Thermodynamic derivations of the heat evolution equation
  • 6.4 Grain boundary
  • 6.4.1 Principle of virtual power
  • 6.4.2 Energetic and dissipative constitutive equations
  • 6.4.3 Free energy and energetic thermodynamic microforces
  • 6.4.4 Dissipation potential and dissipative thermodynamic microforce
  • 6.4.5 Flow rule
  • 6.5 Finite element formulation for the proposed model
  • 6.6 Validation of the proposed model
  • 6.6.1 Uniaxial tensile test with aluminum thin films
  • 6.6.2 Biaxial bulge test with copper thin films
  • 6.6.3 Microtensile test with nickel thin films
  • 6.7 Simple shear problem
  • 6.7.1 Energetic gradient hardening
  • 6.7.2 Dissipative gradient strengthening