Gradient-enhanced continuum plasticity /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Gradient-Enhanced Continuum Plasticity
- Copyright Page
- Dedication
- Contents
- About the authors
- Preface
- 1 Introduction
- References
- 2 Review of experimental observations on the gradient-enhanced continuum plasticity
- 2.1 Uniaxial tests
- 2.2 Bending tests
- 2.3 Torsion tests
- 2.4 Indentation tests
- 2.5 Bulge tests of thin film
- 2.6 Shear tests
- References
- 3 Review of theoretical developments on the gradient-enhanced continuum plasticity
- 3.1 Aifantis theory
- 3.2 Fleck and Hutchinson theory
- 3.2.1 Strain gradient plasticity version of J2 deformation theory
- 3.2.2 Strain gradient plasticity version of the J2 flow theory
- 3.3 Gudmundson, Gurtin and Anand theory
- 3.3.1 Irrotational plastic flow
- 3.3.2 Rotational plastic flow
- 3.4 Implicit gradient plasticity theory
- 3.5 Micromorphic approach
- 3.6 Mechanism-based strain gradient plasticity theory
- 3.7 Voyiadjis theory
- 3.8 Other types of theories
- References
- 4 Review of numerical approaches using the gradient-enhanced continuum plasticity
- 4.1 Aifantis theory
- 4.2 Fleck and Hutchinson theory
- 4.3 Gudmundson, Gurtin, and Anand theory
- 4.3.1 Irrotational plastic flow
- 4.3.2 Rotational plastic flow
- 4.4 Implicit gradient plasticity theory
- 4.5 Micromorphic approach
- 4.6 Mechanism-based strain gradient plasticity theory
- 4.7 Voyiadjis theory
- 4.8 Other types of theories
- References
- 5 Lower-order strain gradient plasticity theory with variable length scales
- 5.1 Gradient plasticity theories
- 5.2 Physical bases
- 5.3 Applications
- 5.3.1 Microbending of thin films
- 5.3.2 Microtorsion of thin wires
- 5.4 Comparing with experiments
- 5.5 A nonfixed material length scale
- References
- 6 Gradient-enhanced continuum plasticity for small deformations
- 6.1 Background
- 6.2 Kinematics
- 6.3 Grain interior
- 6.3.1 Principle of virtual power
- 6.3.2 Laws of thermodynamics
- 6.3.3 Energetic and dissipative constitutive equations
- 6.3.4 Free energy and energetic thermodynamic microforces
- 6.3.5 Dissipation potential and dissipative thermodynamic microforces
- 6.3.6 Flow rule
- 6.3.7 Thermodynamic derivations of the heat evolution equation
- 6.4 Grain boundary
- 6.4.1 Principle of virtual power
- 6.4.2 Energetic and dissipative constitutive equations
- 6.4.3 Free energy and energetic thermodynamic microforces
- 6.4.4 Dissipation potential and dissipative thermodynamic microforce
- 6.4.5 Flow rule
- 6.5 Finite element formulation for the proposed model
- 6.6 Validation of the proposed model
- 6.6.1 Uniaxial tensile test with aluminum thin films
- 6.6.2 Biaxial bulge test with copper thin films
- 6.6.3 Microtensile test with nickel thin films
- 6.7 Simple shear problem
- 6.7.1 Energetic gradient hardening
- 6.7.2 Dissipative gradient strengthening