Cargando…

Functionality, advancements and industrial applications of heat pipes /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Zohuri, Bahman
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, 2020.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Functionality, Advancements and Industrial Applications of Heat Pipes
  • Functionality, Advancements and Industrial Applications of Heat Pipes
  • Copyright
  • Dedication
  • Contents
  • About the author
  • Preface
  • Acknowledgements
  • 1
  • Heat pipe infrastructure
  • 1.1 Introduction
  • 1.2 Basic principles of heat pipes and history
  • 1.3 History
  • 1.4 Description and types of heat pipes
  • 1.5 Principles of operation
  • 1.5.1 Container
  • 1.5.2 Working fluid
  • 1.5.3 Wick or capillary structure
  • 1.5.4 Sintered powder
  • 1.5.5 Grooved tube
  • 1.5.6 Screen mesh
  • 1.5.7 How the heat pipe is working
  • 1.5.8 Heat pipe assemblies design guidelines
  • 1.5.9 Orientation with respect to gravity
  • 1.5.10 Temperature limits
  • 1.5.11 Heat removal
  • 1.5.12 Reliability
  • 1.5.13 Forming or shaping
  • 1.5.14 Effects of length and pipe diameter
  • 1.5.15 Wick structures
  • 1.6 Heat pipe operating ranges
  • 1.7 Constraints
  • 1.8 Lessons learned
  • 1.9 Applications
  • 1.10 Summary
  • References
  • 2
  • Application of heat pipe in industry
  • 2.1 Introduction
  • 2.2 Overview industrial application of heat pipes
  • 2.2.1 Cooling of electronic components
  • 2.2.2 Spacecraft
  • 2.2.3 Energy conservation
  • 2.2.4 Heat pipe driven heat exchanger (HPHX)
  • 2.2.5 Preservation of permafrost
  • 2.2.6 Snow melting and deicing
  • 2.2.7 Heat pipe inserts for thermometer calibration
  • 2.2.8 High-temperature heat pipe furnace
  • 2.2.9 Miscellaneous heat pipe applications
  • 2.3 Energy-dependent boundary equations
  • 2.4 Heat pipe in space
  • 2.4.1 Radioisotope systems
  • 2.4.1.1 Ulysses
  • 2.4.1.2 Galileo
  • 2.4.1.3 Cassini-huygens
  • 2.4.1.4 New Horizons
  • 2.4.2 Fission systems: heat
  • 2.4.3 Fission systems: propulsion
  • 2.4.4 Nuclear thermionic technology development
  • 2.4.4.1 Conductively coupled, multicell thermionic fuel element
  • 2.4.4.2 Cylindrical inverted multicell
  • 2.4.5 Potential space nuclear thermionic missions
  • 2.4.6 Heat pipe power system
  • 2.4.7 Space reactor power systems
  • 2.4.7.1 Heat pipe operated mars exploration reactor (HOMER)
  • 2.4.7.2 Heat pipe reactor HOMER-15 and Homer-25 designs
  • 2.4.7.3 Heat pipe and fuel pins configuration
  • 2.4.8 Stirling engine system
  • 2.4.9 Heat pipe design
  • 2.4.10 Nuclear reactor power system
  • 2.4.11 Material choices
  • 2.4.12 Safety considerations
  • 2.4.13 Reactor control
  • 2.4.14 Neutron shielding
  • 2.4.15 Reactor sitting
  • 2.4.16 Nuclear energy propulsion of aircraft (NEPA)
  • 2.4.17 Project prometheus 2003
  • 2.4.18 Mars one mission
  • 2.4.19 Kilopower reactor using stirling technology (KRUSTY) experiment
  • 2.5 Space shuttle orbiter heat pipe applications
  • 2.6 Heat pipe in electronics
  • 2.6.1 Electronic and electrical equipment cooling
  • 2.7 Heat pipe in defense and avionics
  • 2.7.1 On the ground application
  • 2.7.2 In the sea application
  • 2.7.3 In the air application