Functionality, advancements and industrial applications of heat pipes /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Academic Press,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Functionality, Advancements and Industrial Applications of Heat Pipes
- Functionality, Advancements and Industrial Applications of Heat Pipes
- Copyright
- Dedication
- Contents
- About the author
- Preface
- Acknowledgements
- 1
- Heat pipe infrastructure
- 1.1 Introduction
- 1.2 Basic principles of heat pipes and history
- 1.3 History
- 1.4 Description and types of heat pipes
- 1.5 Principles of operation
- 1.5.1 Container
- 1.5.2 Working fluid
- 1.5.3 Wick or capillary structure
- 1.5.4 Sintered powder
- 1.5.5 Grooved tube
- 1.5.6 Screen mesh
- 1.5.7 How the heat pipe is working
- 1.5.8 Heat pipe assemblies design guidelines
- 1.5.9 Orientation with respect to gravity
- 1.5.10 Temperature limits
- 1.5.11 Heat removal
- 1.5.12 Reliability
- 1.5.13 Forming or shaping
- 1.5.14 Effects of length and pipe diameter
- 1.5.15 Wick structures
- 1.6 Heat pipe operating ranges
- 1.7 Constraints
- 1.8 Lessons learned
- 1.9 Applications
- 1.10 Summary
- References
- 2
- Application of heat pipe in industry
- 2.1 Introduction
- 2.2 Overview industrial application of heat pipes
- 2.2.1 Cooling of electronic components
- 2.2.2 Spacecraft
- 2.2.3 Energy conservation
- 2.2.4 Heat pipe driven heat exchanger (HPHX)
- 2.2.5 Preservation of permafrost
- 2.2.6 Snow melting and deicing
- 2.2.7 Heat pipe inserts for thermometer calibration
- 2.2.8 High-temperature heat pipe furnace
- 2.2.9 Miscellaneous heat pipe applications
- 2.3 Energy-dependent boundary equations
- 2.4 Heat pipe in space
- 2.4.1 Radioisotope systems
- 2.4.1.1 Ulysses
- 2.4.1.2 Galileo
- 2.4.1.3 Cassini-huygens
- 2.4.1.4 New Horizons
- 2.4.2 Fission systems: heat
- 2.4.3 Fission systems: propulsion
- 2.4.4 Nuclear thermionic technology development
- 2.4.4.1 Conductively coupled, multicell thermionic fuel element
- 2.4.4.2 Cylindrical inverted multicell
- 2.4.5 Potential space nuclear thermionic missions
- 2.4.6 Heat pipe power system
- 2.4.7 Space reactor power systems
- 2.4.7.1 Heat pipe operated mars exploration reactor (HOMER)
- 2.4.7.2 Heat pipe reactor HOMER-15 and Homer-25 designs
- 2.4.7.3 Heat pipe and fuel pins configuration
- 2.4.8 Stirling engine system
- 2.4.9 Heat pipe design
- 2.4.10 Nuclear reactor power system
- 2.4.11 Material choices
- 2.4.12 Safety considerations
- 2.4.13 Reactor control
- 2.4.14 Neutron shielding
- 2.4.15 Reactor sitting
- 2.4.16 Nuclear energy propulsion of aircraft (NEPA)
- 2.4.17 Project prometheus 2003
- 2.4.18 Mars one mission
- 2.4.19 Kilopower reactor using stirling technology (KRUSTY) experiment
- 2.5 Space shuttle orbiter heat pipe applications
- 2.6 Heat pipe in electronics
- 2.6.1 Electronic and electrical equipment cooling
- 2.7 Heat pipe in defense and avionics
- 2.7.1 On the ground application
- 2.7.2 In the sea application
- 2.7.3 In the air application