Elastic behavior of polymer melts : rheology and processing /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Libro |
Idioma: | Inglés |
Publicado: |
Munich : Cincinnati :
Hanser ; Hanser Publications,
[2019]
[Place of publication not identified] : Hanser publications, 2019. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Machine generated contents note: 1. Introduction
- 1.1. References
- 2. Phenomenological Evidence of Elasticity
- 2.1. Effects Due to Normal Stresses
- 2.2. Extrudate Swell
- 2.3. Contraction Flow
- 2.4. Time Dependence
- 2.5. References
- 3. Principles of the Determination of Elastic Properties
- 3.1. Creep Recovery Experiment and Retardation Spectrum
- 3.2. Relaxation Experiment and Relaxation Spectrum
- 3.3. Dynamic-Mechanical Experiment
- 3.4. Stressing Experiment
- 3.5. Capillary Rheometry
- 3.6. Recoverable Elongation
- 3.7. References
- 4. Experimental Basics of Various Methods for Measuring the Elastic Behavior
- 4.1. Thermal Stability
- 4.2. Linearity and Stationarity
- 4.2.1. Creep Recovery Experiment
- 4.2.2. Relaxation Experiment
- 4.2.3. Dynamic-Mechanical Experiments
- 4.2.4. Stressing Experiments
- 4.2.5. Extrudate Swell
- 4.2.6. Recoverable Elongation
- 4.3. References
- 5. Dependence of Elastic Quantities on Experimental Parameters
- 5.1. Recoverable Compliance
- Note continued: 5.1.1. Stress Dependence
- 5.1.2. Temperature Dependence
- 5.2. Relaxation Modulus
- 5.3. Storage Modulus
- 5.4. Normal Stress Difference
- 5.5. Recoverable Elongation
- 5.6. Extrudate Swell
- 5.6.1. General Features of Extrudate Swell
- 5.6.2. Detailed Analysis of Extrudate Swell
- 5.6.3. Extrudate Swell for Various Die Geometries
- 5.7. References
- 6. Dependence of Elastic Properties on Molecular Structure
- 6.1. Analysis of Molecular Structure
- 6.1.1. Molar Mass Distribution and Its Characteristic Quantities
- 6.1.2. Branches and Their Analysis
- 6.2. Influence of Molar Mass
- 6.2.1. Linear Elastic Properties
- 6.2.2. Nonlinear Elastic Properties
- 6.3. Influence of Molar Mass Distribution
- 6.3.1. Linear Elastic Properties
- 6.3.1.1. Dependence on the Polydispersity Index
- 6.3.1.2. Effect of High Molar Mass Components
- 6.3.2. Nonlinear Elastic Properties
- 6.4. Influence of Long-Chain Branching
- 6.4.1. Linear Elastic Properties
- Note continued: 6.4.1.1. Long-Chain Branched Polystyrenes
- 6.4.1.2. Long-Chain Branched Polyolefins
- 6.4.1.3. Temperature Dependence of Linear Elastic Compliances
- 6.4.1.4. Retardation Spectra
- 6.4.1.5. Relaxation Spectra
- 6.4.2. Nonlinear Elastic Properties
- 6.4.2.1. Recoverable Compliance
- 6.4.2.2. Damping Function
- 6.4.2.3. Extrudate Swell
- 6.4.2.4. Recoverable Elongation
- 6.5. Influence of Mechanical Pretreatments on Elastic Properties
- 6.5.1. Extrudate Swell of Long-Chain Branched Polyethylenes
- 6.5.2. Elastic Properties of a Long-Chain Branched and a Linear Polypropylene
- 6.6. References
- 7. Models for the Description of Elastic Effects
- 7.1. Spring-Dashpot Models
- 7.2. Entanglements
- 7.3. Doi-Edwards Theory
- 7.4. Theory for Long-Chain Branched Polymers
- 7.5. Mixing Rule for the Linear Steady-State Recoverable Compliance of Blends
- 7.6. Numerical Description of the Nonlinear Behavior of the Steady-State Recoverable Compliance
- Note continued: 7.7. Numerical Descriptions of Extrudate Swell
- 7.7.1. Entry Region
- 7.7.2. Flow within the Capillary
- 7.8. References
- 8. Elastic Behavior and Its Relevance for Various Applications
- 8.1. Creep Recovery Experiments as a Contribution to Molecular Analysis
- 8.1.1. Creep Recovery Compliance
- 8.1.2. Retardation Spectra
- 8.1.3. Calculation of Dynamic-Mechanical Quantities from Retardation Spectra
- 8.2. Elastic Properties and Entrance Flow Patterns
- 8.3. Elastic Behavior of Refined Polyethylenes and Their Relation to End-Use Properties
- 8.3.1. Application-Related Properties of IUPAC C in Comparison with IUPAC A
- 8.3.2. Optical Properties of Various Polyethylenes After Mechanical Pretreatments
- 8.4. Extrudate Swell as a Quantity for Qualitative Material Specifications
- 8.5. References
- 9. Polymeric Materials with Microparticles
- 9.1. General Experimental Features
- 9.1.1. Slip and Edge Fracture
- 9.1.2. Yielding
- 9.2. Glass Beads as Fillers
- Note continued: 9.2.1. Determination of Yield Stresses
- 9.2.2. Recoverable Strain
- 9.2.3. Colloidal Glasses
- 9.2.4. Model for Suspended Glass Beads of Microsize
- 9.2.5. Dynamic-Mechanical Measurements
- 9.3. Normal Stress Differences and Recoverable Strain
- 9.4. Extrudate Swell
- 9.5. Various Microfillers
- 9.6. References
- 10. Polymeric Materials with Nanoparticles
- 10.1. Nanoparticles Investigated
- 10.2. Dynamic-Mechanical Experiments
- 10.2.1. Determination of Linear Behavior
- 10.2.2. Melts with Various Concentrations of Nanoparticles
- 10.3. Creep and Creep Recovery Experiments
- 10.3.1. Influence of a Particle Network
- 10.3.2. Nanosilica-Filled PMMA as a Model System
- 10.3.3. Retardation Spectra
- 10.4. Model
- 10.4.1. Experimental Results Supporting the Model
- 10.4.1.1. Dependence of the Recoverable Compliance on Filler Size
- 10.4.1.2. Stress Dependence of the Recoverable Compliance
- 10.5. Temperature Dependence of Creep and Creep Recovery
- Note continued: 10.6. Influence of the Polymer Matrix on the Linear Steady-State Recoverable Compliance
- 10.7. Linear Elastic Properties of Melts with Various Nanofillers
- 10.7.1. Polymethylmethacrylate with Nanoclay
- 10.7.2. Polymethylmethacrylate with Graphite
- 10.7.3. Polymethylmethacrylate, Polycarbonate, and Polypropylene with Carbon Nanotubes
- 10.8. Nonlinear Elastic Properties
- 10.8.1. Extrudate Swell
- 10.8.2. Recoverable Elongation
- 10.9.Comparison of Nonlinear and Linear Elastic Properties
- 10.10. References
- 11. Immiscible Polymer Blends
- 11.1. Linear Elastic Behavior
- 11.1.1. Dynamic-Mechanical Experiments
- 11.1.2. Recoverable Shear
- 11.2. Nonlinear Elastic Behavior
- 11.2.1. Recoverable Elongation
- 11.2.2. Extrudate Swell
- 11.3. References
- 12. Influence of Elastic Properties on Processing
- 12.1. Measurement of Elastic Quantities at High Shear Rates
- 12.2. The Role of Extrudate Swell in the Shape of Extruded Parts
- Note continued: 12.3. The Role of Extrudate Swell in Pelletizing
- 12.4. The Role of Extrudate Swell in Additive Manufacturing by Material Extrusion
- 12.5. Extrudate Swell and Extrusion through an Annular Die
- 12.6. Extrudate Swell of Rectangular Dies
- 12.7. Influence of Tensile Stress on Extrudate Swell
- 12.8. Elastic Properties of Polymer Melts and Their Relation with Film Drawing
- 12.8.1. Basic Features of Film Drawing
- 12.8.2. Models for the Drawing Process
- 12.8.3. Drawing Experiments on Three Polypropylenes
- 12.9. Draw Resonance
- 12.9.1. Film Drawing
- 12.9.2. Fiber Spinning
- 12.9.3.Comparison with Results from the Literature
- 12.10. References
- 13. Influences of Processing on Molecular Orientation and Recoverable Strain
- 13.1. General Influence of Processing
- 13.2. Molecular Orientation and Recoverable Strain
- 13.3. Injection-Molded Parts from Amorphous Polymers
- 13.3.1. Recoverable Strain within an Injection-Molded Part
- Note continued: 13.3.2. Mechanical Properties of Injection-Molded Parts
- 13.4. Films from Semi-crystalline Polymers
- 13.4.1. Stretch Films
- 13.4.2. Shrink Films
- 13.4.2.1. Thermal Shrinkage of Uniaxially Stretched Films
- 13.4.2.2. Shrinkage of Biaxially Stretched Films
- 13.4.3. Role of Molecular Orientation for Applications
- 13.4.3.1. Applications of Stretch Films
- 13.4.3.2. Applications of Shrink Films
- 13.5. References.