|
|
|
|
LEADER |
00000cam a2200000Mi 4500 |
001 |
SCIDIR_on1144858650 |
003 |
OCoLC |
005 |
20231120010406.0 |
008 |
190728t20192019gw a b 001 0 eng |
040 |
|
|
|a AU@
|b eng
|e rda
|c AU@
|d OCLCO
|d YDX
|d TXA
|d YDXIT
|d OCLCF
|d OCLCQ
|d OCLCO
|d OPELS
|
019 |
|
|
|a 1110450670
|
020 |
|
|
|a 9781569907542
|q (hbk.)
|
020 |
|
|
|a 1569907544
|q (hbk.)
|
035 |
|
|
|a (OCoLC)1144858650
|z (OCoLC)1110450670
|
050 |
|
4 |
|a TA455.P58
|b M86 2019
|
082 |
0 |
4 |
|a 620.192
|2 23
|
100 |
1 |
|
|a M�unstedt, Helmut,
|d 1941-
|e author.
|
245 |
1 |
0 |
|a Elastic behavior of polymer melts :
|b rheology and processing /
|c Helmut M�unstedt.
|
264 |
|
1 |
|a Munich :
|b Hanser ;
|a Cincinnati :
|b Hanser Publications,
|c [2019]
|
264 |
|
1 |
|a [Place of publication not identified] :
|b Hanser publications,
|c 2019.
|
264 |
|
4 |
|c �2019
|
300 |
|
|
|a xx, 274 pages :
|b illustrations ;
|c 25 cm
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a unmediated
|b n
|2 rdamedia
|
338 |
|
|
|a volume
|b nc
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Machine generated contents note: 1. Introduction -- 1.1. References -- 2. Phenomenological Evidence of Elasticity -- 2.1. Effects Due to Normal Stresses -- 2.2. Extrudate Swell -- 2.3. Contraction Flow -- 2.4. Time Dependence -- 2.5. References -- 3. Principles of the Determination of Elastic Properties -- 3.1. Creep Recovery Experiment and Retardation Spectrum -- 3.2. Relaxation Experiment and Relaxation Spectrum -- 3.3. Dynamic-Mechanical Experiment -- 3.4. Stressing Experiment -- 3.5. Capillary Rheometry -- 3.6. Recoverable Elongation -- 3.7. References -- 4. Experimental Basics of Various Methods for Measuring the Elastic Behavior -- 4.1. Thermal Stability -- 4.2. Linearity and Stationarity -- 4.2.1. Creep Recovery Experiment -- 4.2.2. Relaxation Experiment -- 4.2.3. Dynamic-Mechanical Experiments -- 4.2.4. Stressing Experiments -- 4.2.5. Extrudate Swell -- 4.2.6. Recoverable Elongation -- 4.3. References -- 5. Dependence of Elastic Quantities on Experimental Parameters -- 5.1. Recoverable Compliance
|
505 |
0 |
|
|a Note continued: 5.1.1. Stress Dependence -- 5.1.2. Temperature Dependence -- 5.2. Relaxation Modulus -- 5.3. Storage Modulus -- 5.4. Normal Stress Difference -- 5.5. Recoverable Elongation -- 5.6. Extrudate Swell -- 5.6.1. General Features of Extrudate Swell -- 5.6.2. Detailed Analysis of Extrudate Swell -- 5.6.3. Extrudate Swell for Various Die Geometries -- 5.7. References -- 6. Dependence of Elastic Properties on Molecular Structure -- 6.1. Analysis of Molecular Structure -- 6.1.1. Molar Mass Distribution and Its Characteristic Quantities -- 6.1.2. Branches and Their Analysis -- 6.2. Influence of Molar Mass -- 6.2.1. Linear Elastic Properties -- 6.2.2. Nonlinear Elastic Properties -- 6.3. Influence of Molar Mass Distribution -- 6.3.1. Linear Elastic Properties -- 6.3.1.1. Dependence on the Polydispersity Index -- 6.3.1.2. Effect of High Molar Mass Components -- 6.3.2. Nonlinear Elastic Properties -- 6.4. Influence of Long-Chain Branching -- 6.4.1. Linear Elastic Properties
|
505 |
0 |
|
|a Note continued: 6.4.1.1. Long-Chain Branched Polystyrenes -- 6.4.1.2. Long-Chain Branched Polyolefins -- 6.4.1.3. Temperature Dependence of Linear Elastic Compliances -- 6.4.1.4. Retardation Spectra -- 6.4.1.5. Relaxation Spectra -- 6.4.2. Nonlinear Elastic Properties -- 6.4.2.1. Recoverable Compliance -- 6.4.2.2. Damping Function -- 6.4.2.3. Extrudate Swell -- 6.4.2.4. Recoverable Elongation -- 6.5. Influence of Mechanical Pretreatments on Elastic Properties -- 6.5.1. Extrudate Swell of Long-Chain Branched Polyethylenes -- 6.5.2. Elastic Properties of a Long-Chain Branched and a Linear Polypropylene -- 6.6. References -- 7. Models for the Description of Elastic Effects -- 7.1. Spring-Dashpot Models -- 7.2. Entanglements -- 7.3. Doi-Edwards Theory -- 7.4. Theory for Long-Chain Branched Polymers -- 7.5. Mixing Rule for the Linear Steady-State Recoverable Compliance of Blends -- 7.6. Numerical Description of the Nonlinear Behavior of the Steady-State Recoverable Compliance
|
505 |
0 |
|
|a Note continued: 7.7. Numerical Descriptions of Extrudate Swell -- 7.7.1. Entry Region -- 7.7.2. Flow within the Capillary -- 7.8. References -- 8. Elastic Behavior and Its Relevance for Various Applications -- 8.1. Creep Recovery Experiments as a Contribution to Molecular Analysis -- 8.1.1. Creep Recovery Compliance -- 8.1.2. Retardation Spectra -- 8.1.3. Calculation of Dynamic-Mechanical Quantities from Retardation Spectra -- 8.2. Elastic Properties and Entrance Flow Patterns -- 8.3. Elastic Behavior of Refined Polyethylenes and Their Relation to End-Use Properties -- 8.3.1. Application-Related Properties of IUPAC C in Comparison with IUPAC A -- 8.3.2. Optical Properties of Various Polyethylenes After Mechanical Pretreatments -- 8.4. Extrudate Swell as a Quantity for Qualitative Material Specifications -- 8.5. References -- 9. Polymeric Materials with Microparticles -- 9.1. General Experimental Features -- 9.1.1. Slip and Edge Fracture -- 9.1.2. Yielding -- 9.2. Glass Beads as Fillers
|
505 |
0 |
|
|a Note continued: 9.2.1. Determination of Yield Stresses -- 9.2.2. Recoverable Strain -- 9.2.3. Colloidal Glasses -- 9.2.4. Model for Suspended Glass Beads of Microsize -- 9.2.5. Dynamic-Mechanical Measurements -- 9.3. Normal Stress Differences and Recoverable Strain -- 9.4. Extrudate Swell -- 9.5. Various Microfillers -- 9.6. References -- 10. Polymeric Materials with Nanoparticles -- 10.1. Nanoparticles Investigated -- 10.2. Dynamic-Mechanical Experiments -- 10.2.1. Determination of Linear Behavior -- 10.2.2. Melts with Various Concentrations of Nanoparticles -- 10.3. Creep and Creep Recovery Experiments -- 10.3.1. Influence of a Particle Network -- 10.3.2. Nanosilica-Filled PMMA as a Model System -- 10.3.3. Retardation Spectra -- 10.4. Model -- 10.4.1. Experimental Results Supporting the Model -- 10.4.1.1. Dependence of the Recoverable Compliance on Filler Size -- 10.4.1.2. Stress Dependence of the Recoverable Compliance -- 10.5. Temperature Dependence of Creep and Creep Recovery
|
505 |
0 |
|
|a Note continued: 10.6. Influence of the Polymer Matrix on the Linear Steady-State Recoverable Compliance -- 10.7. Linear Elastic Properties of Melts with Various Nanofillers -- 10.7.1. Polymethylmethacrylate with Nanoclay -- 10.7.2. Polymethylmethacrylate with Graphite -- 10.7.3. Polymethylmethacrylate, Polycarbonate, and Polypropylene with Carbon Nanotubes -- 10.8. Nonlinear Elastic Properties -- 10.8.1. Extrudate Swell -- 10.8.2. Recoverable Elongation -- 10.9.Comparison of Nonlinear and Linear Elastic Properties -- 10.10. References -- 11. Immiscible Polymer Blends -- 11.1. Linear Elastic Behavior -- 11.1.1. Dynamic-Mechanical Experiments -- 11.1.2. Recoverable Shear -- 11.2. Nonlinear Elastic Behavior -- 11.2.1. Recoverable Elongation -- 11.2.2. Extrudate Swell -- 11.3. References -- 12. Influence of Elastic Properties on Processing -- 12.1. Measurement of Elastic Quantities at High Shear Rates -- 12.2. The Role of Extrudate Swell in the Shape of Extruded Parts
|
505 |
0 |
|
|a Note continued: 12.3. The Role of Extrudate Swell in Pelletizing -- 12.4. The Role of Extrudate Swell in Additive Manufacturing by Material Extrusion -- 12.5. Extrudate Swell and Extrusion through an Annular Die -- 12.6. Extrudate Swell of Rectangular Dies -- 12.7. Influence of Tensile Stress on Extrudate Swell -- 12.8. Elastic Properties of Polymer Melts and Their Relation with Film Drawing -- 12.8.1. Basic Features of Film Drawing -- 12.8.2. Models for the Drawing Process -- 12.8.3. Drawing Experiments on Three Polypropylenes -- 12.9. Draw Resonance -- 12.9.1. Film Drawing -- 12.9.2. Fiber Spinning -- 12.9.3.Comparison with Results from the Literature -- 12.10. References -- 13. Influences of Processing on Molecular Orientation and Recoverable Strain -- 13.1. General Influence of Processing -- 13.2. Molecular Orientation and Recoverable Strain -- 13.3. Injection-Molded Parts from Amorphous Polymers -- 13.3.1. Recoverable Strain within an Injection-Molded Part
|
505 |
0 |
|
|a Note continued: 13.3.2. Mechanical Properties of Injection-Molded Parts -- 13.4. Films from Semi-crystalline Polymers -- 13.4.1. Stretch Films -- 13.4.2. Shrink Films -- 13.4.2.1. Thermal Shrinkage of Uniaxially Stretched Films -- 13.4.2.2. Shrinkage of Biaxially Stretched Films -- 13.4.3. Role of Molecular Orientation for Applications -- 13.4.3.1. Applications of Stretch Films -- 13.4.3.2. Applications of Shrink Films -- 13.5. References.
|
650 |
|
0 |
|a Polymers
|x Rheology.
|
650 |
|
0 |
|a Plastics.
|
650 |
|
0 |
|a Rheology.
|
650 |
|
6 |
|a Polym�eres
|x Rh�eologie.
|0 (CaQQLa)201-0141123
|
650 |
|
6 |
|a Mati�eres plastiques.
|0 (CaQQLa)201-0010878
|
650 |
|
6 |
|a Rh�eologie.
|0 (CaQQLa)201-0025965
|
650 |
|
7 |
|a Plastics.
|2 fast
|0 (OCoLC)fst01066542
|
650 |
|
7 |
|a Polymers
|x Rheology.
|2 fast
|0 (OCoLC)fst01070637
|
650 |
|
7 |
|a Rheology.
|2 fast
|0 (OCoLC)fst01096929
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9781569907542
|z Texto completo
|