Cargando…

Elastic behavior of polymer melts : rheology and processing /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: M�unstedt, Helmut, 1941- (Autor)
Formato: Libro
Idioma:Inglés
Publicado: Munich : Cincinnati : Hanser ; Hanser Publications, [2019]
[Place of publication not identified] : Hanser publications, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000Mi 4500
001 SCIDIR_on1144858650
003 OCoLC
005 20231120010406.0
008 190728t20192019gw a b 001 0 eng
040 |a AU@  |b eng  |e rda  |c AU@  |d OCLCO  |d YDX  |d TXA  |d YDXIT  |d OCLCF  |d OCLCQ  |d OCLCO  |d OPELS 
019 |a 1110450670 
020 |a 9781569907542  |q (hbk.) 
020 |a 1569907544  |q (hbk.) 
035 |a (OCoLC)1144858650  |z (OCoLC)1110450670 
050 4 |a TA455.P58  |b M86 2019 
082 0 4 |a 620.192  |2 23 
100 1 |a M�unstedt, Helmut,  |d 1941-  |e author. 
245 1 0 |a Elastic behavior of polymer melts :  |b rheology and processing /  |c Helmut M�unstedt. 
264 1 |a Munich :  |b Hanser ;  |a Cincinnati :  |b Hanser Publications,  |c [2019] 
264 1 |a [Place of publication not identified] :  |b Hanser publications,  |c 2019. 
264 4 |c �2019 
300 |a xx, 274 pages :  |b illustrations ;  |c 25 cm 
336 |a text  |b txt  |2 rdacontent 
337 |a unmediated  |b n  |2 rdamedia 
338 |a volume  |b nc  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
505 0 |a Machine generated contents note: 1. Introduction -- 1.1. References -- 2. Phenomenological Evidence of Elasticity -- 2.1. Effects Due to Normal Stresses -- 2.2. Extrudate Swell -- 2.3. Contraction Flow -- 2.4. Time Dependence -- 2.5. References -- 3. Principles of the Determination of Elastic Properties -- 3.1. Creep Recovery Experiment and Retardation Spectrum -- 3.2. Relaxation Experiment and Relaxation Spectrum -- 3.3. Dynamic-Mechanical Experiment -- 3.4. Stressing Experiment -- 3.5. Capillary Rheometry -- 3.6. Recoverable Elongation -- 3.7. References -- 4. Experimental Basics of Various Methods for Measuring the Elastic Behavior -- 4.1. Thermal Stability -- 4.2. Linearity and Stationarity -- 4.2.1. Creep Recovery Experiment -- 4.2.2. Relaxation Experiment -- 4.2.3. Dynamic-Mechanical Experiments -- 4.2.4. Stressing Experiments -- 4.2.5. Extrudate Swell -- 4.2.6. Recoverable Elongation -- 4.3. References -- 5. Dependence of Elastic Quantities on Experimental Parameters -- 5.1. Recoverable Compliance 
505 0 |a Note continued: 5.1.1. Stress Dependence -- 5.1.2. Temperature Dependence -- 5.2. Relaxation Modulus -- 5.3. Storage Modulus -- 5.4. Normal Stress Difference -- 5.5. Recoverable Elongation -- 5.6. Extrudate Swell -- 5.6.1. General Features of Extrudate Swell -- 5.6.2. Detailed Analysis of Extrudate Swell -- 5.6.3. Extrudate Swell for Various Die Geometries -- 5.7. References -- 6. Dependence of Elastic Properties on Molecular Structure -- 6.1. Analysis of Molecular Structure -- 6.1.1. Molar Mass Distribution and Its Characteristic Quantities -- 6.1.2. Branches and Their Analysis -- 6.2. Influence of Molar Mass -- 6.2.1. Linear Elastic Properties -- 6.2.2. Nonlinear Elastic Properties -- 6.3. Influence of Molar Mass Distribution -- 6.3.1. Linear Elastic Properties -- 6.3.1.1. Dependence on the Polydispersity Index -- 6.3.1.2. Effect of High Molar Mass Components -- 6.3.2. Nonlinear Elastic Properties -- 6.4. Influence of Long-Chain Branching -- 6.4.1. Linear Elastic Properties 
505 0 |a Note continued: 6.4.1.1. Long-Chain Branched Polystyrenes -- 6.4.1.2. Long-Chain Branched Polyolefins -- 6.4.1.3. Temperature Dependence of Linear Elastic Compliances -- 6.4.1.4. Retardation Spectra -- 6.4.1.5. Relaxation Spectra -- 6.4.2. Nonlinear Elastic Properties -- 6.4.2.1. Recoverable Compliance -- 6.4.2.2. Damping Function -- 6.4.2.3. Extrudate Swell -- 6.4.2.4. Recoverable Elongation -- 6.5. Influence of Mechanical Pretreatments on Elastic Properties -- 6.5.1. Extrudate Swell of Long-Chain Branched Polyethylenes -- 6.5.2. Elastic Properties of a Long-Chain Branched and a Linear Polypropylene -- 6.6. References -- 7. Models for the Description of Elastic Effects -- 7.1. Spring-Dashpot Models -- 7.2. Entanglements -- 7.3. Doi-Edwards Theory -- 7.4. Theory for Long-Chain Branched Polymers -- 7.5. Mixing Rule for the Linear Steady-State Recoverable Compliance of Blends -- 7.6. Numerical Description of the Nonlinear Behavior of the Steady-State Recoverable Compliance 
505 0 |a Note continued: 7.7. Numerical Descriptions of Extrudate Swell -- 7.7.1. Entry Region -- 7.7.2. Flow within the Capillary -- 7.8. References -- 8. Elastic Behavior and Its Relevance for Various Applications -- 8.1. Creep Recovery Experiments as a Contribution to Molecular Analysis -- 8.1.1. Creep Recovery Compliance -- 8.1.2. Retardation Spectra -- 8.1.3. Calculation of Dynamic-Mechanical Quantities from Retardation Spectra -- 8.2. Elastic Properties and Entrance Flow Patterns -- 8.3. Elastic Behavior of Refined Polyethylenes and Their Relation to End-Use Properties -- 8.3.1. Application-Related Properties of IUPAC C in Comparison with IUPAC A -- 8.3.2. Optical Properties of Various Polyethylenes After Mechanical Pretreatments -- 8.4. Extrudate Swell as a Quantity for Qualitative Material Specifications -- 8.5. References -- 9. Polymeric Materials with Microparticles -- 9.1. General Experimental Features -- 9.1.1. Slip and Edge Fracture -- 9.1.2. Yielding -- 9.2. Glass Beads as Fillers 
505 0 |a Note continued: 9.2.1. Determination of Yield Stresses -- 9.2.2. Recoverable Strain -- 9.2.3. Colloidal Glasses -- 9.2.4. Model for Suspended Glass Beads of Microsize -- 9.2.5. Dynamic-Mechanical Measurements -- 9.3. Normal Stress Differences and Recoverable Strain -- 9.4. Extrudate Swell -- 9.5. Various Microfillers -- 9.6. References -- 10. Polymeric Materials with Nanoparticles -- 10.1. Nanoparticles Investigated -- 10.2. Dynamic-Mechanical Experiments -- 10.2.1. Determination of Linear Behavior -- 10.2.2. Melts with Various Concentrations of Nanoparticles -- 10.3. Creep and Creep Recovery Experiments -- 10.3.1. Influence of a Particle Network -- 10.3.2. Nanosilica-Filled PMMA as a Model System -- 10.3.3. Retardation Spectra -- 10.4. Model -- 10.4.1. Experimental Results Supporting the Model -- 10.4.1.1. Dependence of the Recoverable Compliance on Filler Size -- 10.4.1.2. Stress Dependence of the Recoverable Compliance -- 10.5. Temperature Dependence of Creep and Creep Recovery 
505 0 |a Note continued: 10.6. Influence of the Polymer Matrix on the Linear Steady-State Recoverable Compliance -- 10.7. Linear Elastic Properties of Melts with Various Nanofillers -- 10.7.1. Polymethylmethacrylate with Nanoclay -- 10.7.2. Polymethylmethacrylate with Graphite -- 10.7.3. Polymethylmethacrylate, Polycarbonate, and Polypropylene with Carbon Nanotubes -- 10.8. Nonlinear Elastic Properties -- 10.8.1. Extrudate Swell -- 10.8.2. Recoverable Elongation -- 10.9.Comparison of Nonlinear and Linear Elastic Properties -- 10.10. References -- 11. Immiscible Polymer Blends -- 11.1. Linear Elastic Behavior -- 11.1.1. Dynamic-Mechanical Experiments -- 11.1.2. Recoverable Shear -- 11.2. Nonlinear Elastic Behavior -- 11.2.1. Recoverable Elongation -- 11.2.2. Extrudate Swell -- 11.3. References -- 12. Influence of Elastic Properties on Processing -- 12.1. Measurement of Elastic Quantities at High Shear Rates -- 12.2. The Role of Extrudate Swell in the Shape of Extruded Parts 
505 0 |a Note continued: 12.3. The Role of Extrudate Swell in Pelletizing -- 12.4. The Role of Extrudate Swell in Additive Manufacturing by Material Extrusion -- 12.5. Extrudate Swell and Extrusion through an Annular Die -- 12.6. Extrudate Swell of Rectangular Dies -- 12.7. Influence of Tensile Stress on Extrudate Swell -- 12.8. Elastic Properties of Polymer Melts and Their Relation with Film Drawing -- 12.8.1. Basic Features of Film Drawing -- 12.8.2. Models for the Drawing Process -- 12.8.3. Drawing Experiments on Three Polypropylenes -- 12.9. Draw Resonance -- 12.9.1. Film Drawing -- 12.9.2. Fiber Spinning -- 12.9.3.Comparison with Results from the Literature -- 12.10. References -- 13. Influences of Processing on Molecular Orientation and Recoverable Strain -- 13.1. General Influence of Processing -- 13.2. Molecular Orientation and Recoverable Strain -- 13.3. Injection-Molded Parts from Amorphous Polymers -- 13.3.1. Recoverable Strain within an Injection-Molded Part 
505 0 |a Note continued: 13.3.2. Mechanical Properties of Injection-Molded Parts -- 13.4. Films from Semi-crystalline Polymers -- 13.4.1. Stretch Films -- 13.4.2. Shrink Films -- 13.4.2.1. Thermal Shrinkage of Uniaxially Stretched Films -- 13.4.2.2. Shrinkage of Biaxially Stretched Films -- 13.4.3. Role of Molecular Orientation for Applications -- 13.4.3.1. Applications of Stretch Films -- 13.4.3.2. Applications of Shrink Films -- 13.5. References. 
650 0 |a Polymers  |x Rheology. 
650 0 |a Plastics. 
650 0 |a Rheology. 
650 6 |a Polym�eres  |x Rh�eologie.  |0 (CaQQLa)201-0141123 
650 6 |a Mati�eres plastiques.  |0 (CaQQLa)201-0010878 
650 6 |a Rh�eologie.  |0 (CaQQLa)201-0025965 
650 7 |a Plastics.  |2 fast  |0 (OCoLC)fst01066542 
650 7 |a Polymers  |x Rheology.  |2 fast  |0 (OCoLC)fst01070637 
650 7 |a Rheology.  |2 fast  |0 (OCoLC)fst01096929 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781569907542  |z Texto completo