Uncertainty quantification in multiscale materials modeling /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge :
Woodhead Publishing,
2020
|
Colección: | Elsevier series in mechanics of advanced materials.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Uncertainty Quantification in Multiscale Materials Modeling
- Mechanics of Advanced Materials Series
- Series editor-in-chief: Vadim V. Silberschmidt
- Series editor: Thomas B�ohlke
- Series editor: David L. McDowell
- Series editor: Zhong Chen
- Uncertainty Quantification in Multiscale Materials Modeling
- Copyright
- Contents
- Contributors
- About the Series editors
- Editor-in-Chief
- Series editors
- Preface
- 1
- Uncertainty quantification in materials modeling
- 1.1 Materials design and modeling
- 1.2 Sources of uncertainty in multiscale materials modeling
- 1.2.1 Sources of epistemic uncertainty in modeling and simulation
- 1.2.2 Sources of model form and parameter uncertainties in multiscale models
- 1.2.2.1 Models at different length and time scales
- 1.2.3 Linking models across scales
- 1.3 Uncertainty quantification methods
- 1.3.1 Monte Carlo simulation
- 1.3.2 Global sensitivity analysis
- 1.3.3 Surrogate modeling
- 1.3.4 Gaussian process regression
- 1.3.5 Bayesian model calibration and validation
- 1.3.6 Polynomial chaos expansion
- 1.3.7 Stochastic collocation and sparse grid
- 1.3.8 Local sensitivity analysis with perturbation
- 1.3.9 Polynomial chaos for stochastic Galerkin
- 1.3.10 Nonprobabilistic approaches
- 1.4 UQ in materials modeling
- 1.4.1 UQ for ab initio and DFT calculations
- 1.4.2 UQ for MD simulation
- 1.4.3 UQ for meso- and macroscale materials modeling
- 1.4.4 UQ for multiscale modeling
- 1.4.5 UQ in materials design
- 1.5 Concluding remarks
- Acknowledgments
- References
- 2
- The uncertainty pyramid for electronic-structure methods
- 2.1 Introduction
- 2.2 Density-functional theory
- 2.2.1 The Kohn-Sham formalism
- 2.2.2 Computational recipes
- 2.3 The DFT uncertainty pyramid
- 2.3.1 Numerical errors
- 2.3.2 Level-of-theory errors
- 2.3.3 Representation errors
- 2.4 DFT uncertainty quantification
- 2.4.1 Regression analysis
- 2.4.2 Representative error measures
- 2.5 Two case studies
- 2.5.1 Case 1: DFT precision for elemental equations of state
- 2.5.2 Case 2: DFT precision and accuracy for the ductility of a W-Re alloy
- 2.6 Discussion and conclusion
- Acknowledgment
- References
- 3
- Bayesian error estimation in density functional theory
- 3.1 Introduction
- 3.2 Construction of the functional ensemble
- 3.3 Selected applications
- 3.4 Conclusion