Advances in agronomy. Volume 160 /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Cambridge, MA :
Academic Press,
2020.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Intro
- Advances in Agronomy
- Copyright
- Contents
- Contributors
- Preface
- Chapter One: Near infrared (NIR) spectroscopy as a rapid and cost-effective method for nutrient analysis of plant leaf ti ...
- 1. Introduction
- 2. NIR spectroscopy principle and application for plant nutrient analysis
- 2.1. History of NIRS for plant nutrient analysis
- 2.2. Principles of NIRS
- 2.3. Plant leaf spectra
- 2.4. Nutrient estimation of plant leaf tissue using NIRS
- 2.5. NIR calibration and validation for estimating plant leaf nutrient status
- 2.5.1. Calibration and validation
- 2.5.2. Review of past studies
- 2.5.3. Spectral range used in calibration for estimating plant leaf nutrient status
- 2.5.4. Macronutrients
- 2.5.4.1. Nitrogen (N)
- 2.5.4.2. Phosphorus (P)
- 2.5.4.3. Potassium (K)
- 2.5.4.4. Sulfur (S)
- 2.5.4.5. Calcium (Ca) and magnesium (Mg)
- 2.5.5. Micronutrients
- 3. Spectral analysis for the prediction of leaf tissue nutrients
- 3.1. Pre-processing of raw NIR spectra
- 3.2. Multivariate analysis
- 3.3. Dry vs fresh samples
- 3.4. Field vs laboratory application
- 4. Conclusions
- Appendix A. Compiled data from reviewed studies used to calculate the statistical distributions of Tables 2-7
- Appendix B. Statistical distribution of calibrations and validations: accuracy parameters for different nutrient types an ...
- Appendix C. Sample nutrient content value range of the reviewed studies
- References
- Chapter Two: Fate and transport of molybdenum in soils: Kinetic modeling
- 1. Introduction and general properties
- 2. Production and uses of molybdenum
- 3. Molybdenum in soils
- 3.1. Mo background concentrations
- 3.2. Mo speciation in aqueous solutions
- 3.3. Mo speciation in soils
- 3.4. Mo bioavailable in soils
- 4. Biogeochemistry
- 4.1. Retention mechanism
- 4.2. pH dependency
- 4.3. Adsorption kinetics
- 4.4. Desorption
- 4.5. Effect of solution composition
- 5. Equilibrium and kinetic modeling
- 5.1. Empirical models
- 5.2. Surface complexation models
- 5.3. Kinetic models
- 5.3.1. Multi-reaction model (MRM)
- 5.3.2. Second order model (SOM)
- 5.3.3. Competitive multi-reaction model (C-MRM)
- 5.3.4. Modified multi-reaction model (M-MRM)
- 5.4. Stirred-flow models
- 5.5. Transport models
- 6. Summary and a look ahead
- Reference
- Chapter Three: Comprehensive evaluation of mineral adsorbents for phosphate removal in agricultural water
- 1. Introduction
- 2. Reactive adsorbents for the recovery of dissolved P
- 2.1. Metal (oxyhydr)oxides
- 2.2. Zero-valent iron
- 2.3. Anion exchange resins and hybrid resins
- 2.4. Layered double hydroxides
- 2.5. Zirconium and lanthanum oxides
- 2.6. Calcium and magnesium oxides and other minerals
- 3. Important criteria for P adsorbent selection
- 3.1. P adsorption capacity of adsorbents
- 3.1.1. pH-dependent adsorption capacity