Cargando…

Advances in agronomy. Volume 160 /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Sparks, Donald L., 1953- (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Cambridge, MA : Academic Press, 2020.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Intro
  • Advances in Agronomy
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter One: Near infrared (NIR) spectroscopy as a rapid and cost-effective method for nutrient analysis of plant leaf ti ...
  • 1. Introduction
  • 2. NIR spectroscopy principle and application for plant nutrient analysis
  • 2.1. History of NIRS for plant nutrient analysis
  • 2.2. Principles of NIRS
  • 2.3. Plant leaf spectra
  • 2.4. Nutrient estimation of plant leaf tissue using NIRS
  • 2.5. NIR calibration and validation for estimating plant leaf nutrient status
  • 2.5.1. Calibration and validation
  • 2.5.2. Review of past studies
  • 2.5.3. Spectral range used in calibration for estimating plant leaf nutrient status
  • 2.5.4. Macronutrients
  • 2.5.4.1. Nitrogen (N)
  • 2.5.4.2. Phosphorus (P)
  • 2.5.4.3. Potassium (K)
  • 2.5.4.4. Sulfur (S)
  • 2.5.4.5. Calcium (Ca) and magnesium (Mg)
  • 2.5.5. Micronutrients
  • 3. Spectral analysis for the prediction of leaf tissue nutrients
  • 3.1. Pre-processing of raw NIR spectra
  • 3.2. Multivariate analysis
  • 3.3. Dry vs fresh samples
  • 3.4. Field vs laboratory application
  • 4. Conclusions
  • Appendix A. Compiled data from reviewed studies used to calculate the statistical distributions of Tables 2-7
  • Appendix B. Statistical distribution of calibrations and validations: accuracy parameters for different nutrient types an ...
  • Appendix C. Sample nutrient content value range of the reviewed studies
  • References
  • Chapter Two: Fate and transport of molybdenum in soils: Kinetic modeling
  • 1. Introduction and general properties
  • 2. Production and uses of molybdenum
  • 3. Molybdenum in soils
  • 3.1. Mo background concentrations
  • 3.2. Mo speciation in aqueous solutions
  • 3.3. Mo speciation in soils
  • 3.4. Mo bioavailable in soils
  • 4. Biogeochemistry
  • 4.1. Retention mechanism
  • 4.2. pH dependency
  • 4.3. Adsorption kinetics
  • 4.4. Desorption
  • 4.5. Effect of solution composition
  • 5. Equilibrium and kinetic modeling
  • 5.1. Empirical models
  • 5.2. Surface complexation models
  • 5.3. Kinetic models
  • 5.3.1. Multi-reaction model (MRM)
  • 5.3.2. Second order model (SOM)
  • 5.3.3. Competitive multi-reaction model (C-MRM)
  • 5.3.4. Modified multi-reaction model (M-MRM)
  • 5.4. Stirred-flow models
  • 5.5. Transport models
  • 6. Summary and a look ahead
  • Reference
  • Chapter Three: Comprehensive evaluation of mineral adsorbents for phosphate removal in agricultural water
  • 1. Introduction
  • 2. Reactive adsorbents for the recovery of dissolved P
  • 2.1. Metal (oxyhydr)oxides
  • 2.2. Zero-valent iron
  • 2.3. Anion exchange resins and hybrid resins
  • 2.4. Layered double hydroxides
  • 2.5. Zirconium and lanthanum oxides
  • 2.6. Calcium and magnesium oxides and other minerals
  • 3. Important criteria for P adsorbent selection
  • 3.1. P adsorption capacity of adsorbents
  • 3.1.1. pH-dependent adsorption capacity