Financial, macro and micro econometrics using R /
Financial, Macro and Micro Econometrics Using R, Volume 42, provides state-of-the-art information on important topics in econometrics, including multivariate GARCH, stochastic frontiers, fractional responses, specification testing and model selection, exogeneity testing, causal analysis and forecast...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam, Netherlands :
North-Holland is an imprint of Elsevier,
[2020]
|
Colección: | Handbook of statistics (Amsterdam, Netherlands) ;
v. 42. |
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover
- Financial, Macro and Micro Econometrics Using R
- Copyright
- Contents
- Contributors
- Preface
- Part I: Finance
- Chapter 1: Financial econometrics and big data: A survey of volatility estimators and tests for the presence of jumps and ...
- 1. Introduction
- 2. Setup
- 3. Realized measures of integrated volatility
- 3.1. Realized volatility
- 3.2. Realized bipower variation
- 3.3. Tripower variation
- 3.4. Two-scale realized volatility
- 3.5. Multiscale realized volatility
- 3.6. Realized kernel
- 3.7. Truncated realized volatility
- 3.8. Modulated bipower variation
- 3.9. Threshold bipower variation
- 3.10. Subsampled realized kernel
- 3.11. MedRV and MinRV
- 4. Jump testing
- 4.1. Barndorff-Nielsen and Shephard test
- 4.2. Lee and Mykland test
- 4.3. Jiang and Oomen test
- 4.4. A�it-Sahalia and Jacod test
- 4.5. Podolskij and Ziggel (PZ) test
- 4.6. Corradi, Silvapulle, and Swanson test
- 5. Co-jump testing
- 5.1. BLT co-jump testing
- 5.2. JT co-jump testing
- 5.3. MG threshold co-jump test
- 5.4. GST co-exceedance rule
- 5.5. CKR co-jump testing
- 6. Empirical experiments
- 6.1. Data description
- 6.2. Methodology
- 6.3. Findings
- 7. Conclusion
- Appendix. R code
- References
- Chapter 2: Real time monitoring of asset markets: Bubbles and crises**This chapter draws on several of our earlier works ...
- 1. Introduction
- 2. The PSY Procedure
- 2.1. The Augmented Dickey-Fuller test
- 2.2. The Recursive Evolving Algorithm
- 3. The PSY Test for Bubble Identification
- 3.1. The Rationale
- 3.2. Consistency
- 4. The PSY Test for Crisis Identification
- 4.1. The Rationale
- 4.2. Consistency
- 5. A New Composite Bootstrap
- 6. Empirical Applications with R
- 6.1. Example 1: The S & P 500 Market
- 6.2. Example 2: Credit Risk in the European Sovereign Sector
- 7. Conclusion
- References
- Further reading
- Chapter 3: Component-wise AdaBoost algorithms for high-dimensional binary classification and class probability predicti
- 1. Introduction
- 2. AdaBoost
- 3. Extensions to AdaBoost algorithms
- 3.1. Real AdaBoost
- 3.2. LogitBoost
- 3.3. Gentle AdaBoost
- 4. Alternative classification methods
- 4.1. Deep Neural Network
- 4.2. Logistic regression with LASSO
- 4.3. Semiparametric single-index model
- 5. Monte Carlo
- 6. Applications
- 7. Conclusions
- Acknowledgments
- References
- Part II: Macro Econometrics
- Chapter 4: Mixed data sampling (MIDAS) regression models
- 1. Introduction
- 2. A stylized MIDAS regression model
- 2.1. A few examples of the constraint function h
- 2.2. Selection of h, d, and k
- 2.3. Statistical inference
- 3. Linear and quasi-linear MIDAS models (affine g)
- 3.1. Unconstrained MIDAS
- 3.2. MIDAS
- 3.3. MIDAS with nonparametric smoothing of weights
- 4. Nonlinear parametric MIDAS models
- 4.1. General considerations
- 4.2. Logistic smooth transition MIDAS (LSTR-MIDAS)