Cargando…

Infrastructure computer vision /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Brilakis, Ioannis, Haas, Carl
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Oxford : Butterworth-Heinemann, �2020.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_on1129274222
003 OCoLC
005 20231120010429.0
006 m o d
007 cr |n|||||||||
008 191202s2020 enk o 001 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d OPELS  |d OCLCF  |d N$T  |d OCLCQ  |d BWN  |d SFB  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d OCLCO 
019 |a 1129399805  |a 1165833467 
020 |a 9780128172582  |q (electronic bk.) 
020 |a 0128172584  |q (electronic bk.) 
020 |z 9780128155035 
020 |z 0128155035 
035 |a (OCoLC)1129274222  |z (OCoLC)1129399805  |z (OCoLC)1165833467 
050 4 |a TA1634 
082 0 4 |a 006.3/7  |2 23 
245 0 0 |a Infrastructure computer vision /  |c edited by Ioannis Brilakis, Carl Haas. 
264 1 |a Oxford :  |b Butterworth-Heinemann,  |c �2020. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
500 |a Includes indexes. 
505 0 0 |t Introduction: Why you need to understand data analytics --  |t Section 1. Getting started: Keep up with your quants: an innumerate's guide to navigating big data /  |r by Thomas H. Davenport --  |t A simple exercise to help you think like a data scientist: an easy way to learn the process of data analytics /  |r by Thomas C. Redman --  |t Section 2. Gather the right information: Do you need all that data?: questions to ask for a focused search /  |r by Ron Ashkenas --  |t How to ask your data scientists for data and analytics: factors to keep in mind to get the information you need /  |r by Michael Li, Madina Kassengaliyeva, and Raymond Perkins --  |t How to design a business experiment: tips for using the scientific method /  |r by Oliver Hauser and Michael Luca --  |t Know the difference between your data and your metrics: understand what you're measuring /  |r by Jeff Bladt and Bob Filbin --  |t The fundamentals of A/  |r B testing: how it works and mistakes to avoid /  |r by Amy Gallo --  |t Can your data be trusted?: gauge whether your data is safe to use /  |r by Thomas C. Redman --  |t Section 3. Analyze the data: A predictive analytics primer: look to the future by looking at the past /  |r by Thomas H. Davenport --  |t Understanding regression analysis: evaluate the relationship between variables /  |r by Amy Gallo --  |t When to act on a correlation, and when not to: assess your confidence in your findings and the risk of being wrong /  |r by David Ritter --  |t Can machine learning solve your business problem?: steps to take before investing in AI /  |r by Anastassia Fedyk --  |t A refresher on statistical significance: check if your results are real or just luck /  |r by Amy Gallo --  |t Linear thinking in a nonlinear world: a common mistake that leads to errors in judgment /  |r by Bart de Langhe, Stefano Puntoni, and Richard Larrick --  |t Pitfalls of data-driven decisions: the cognitive traps to avoid /  |r by Megan MacGarvie and Kristina McElheran --  |t Don't let your analytics cheat the truth: always ask for the outliers /  |r by Michael Schrage --  |t Section 4. Communicate your findings: Data is worthless if you don't communicate it: tell people what it means /  |r by Thomas H. Davenport --  |t When data visualization works, and when it doesn't: not all data is worth the effort /  |r by Jim Stikeleather --  |t How to make charts that pop and persuade: questions to help give your numbers meaning /  |r by Nancy Duarte --  |t Why it's so hard for us to communicate uncertainty: illustrating --  |t and understanding --  |t the likelihood of events: an interview with Scott Berinato /  |r by Nicole Torres --  |t Responding to someone who angrily challenges your data: ensure the data is thorough, then make them an ally /  |r by Jon M. Jachimowicz --  |t Decisions don't start with data: influence others through story and emotion /  |r by Nick Morgan. 
588 0 |a Print version record. 
650 0 |a Computer vision. 
650 6 |a Vision par ordinateur.  |0 (CaQQLa)201-0074889 
650 7 |a Computer vision  |2 fast  |0 (OCoLC)fst00872687 
700 1 |a Brilakis, Ioannis. 
700 1 |a Haas, Carl. 
776 0 8 |i Print version:  |z 0128155035  |z 9780128155035  |w (OCoLC)1097677784 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128155035  |z Texto completo