|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1129185914 |
003 |
OCoLC |
005 |
20231120010428.0 |
006 |
m o d |
007 |
cr un|---aucuu |
008 |
191130s2019 cau o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d UKMGB
|d OCLCO
|d OCLCF
|d OPELS
|d N$T
|d UKAHL
|d OCLCQ
|d PUL
|d YDX
|d S2H
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB9I9267
|2 bnb
|
016 |
7 |
|
|a 019616666
|2 Uk
|
019 |
|
|
|a 1129173024
|
020 |
|
|
|a 0128138939
|
020 |
|
|
|a 9780128138939
|q (electronic bk.)
|
020 |
|
|
|z 9780128138922
|q (pbk.)
|
020 |
|
|
|z 0128138920
|
035 |
|
|
|a (OCoLC)1129185914
|z (OCoLC)1129173024
|
050 |
|
4 |
|a TA418.7
|
082 |
0 |
4 |
|a 620.44
|2 23
|
245 |
0 |
0 |
|a Harnessing Nanoscale Surface Interactions :
|b Contemporary Synthesis, Applications and Theory /
|c edited by David J. Henry.
|
260 |
|
|
|a San Diego :
|b Elsevier,
|c 2019.
|
300 |
|
|
|a 1 online resource (188 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Micro and Nano Technologies Ser.
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Harnessing Nanoscale Surface Interactions; Harnessing Nanoscale Surface Interactions; Copyright; Contents; Contributors; 1 -- Sustainable utilization of renewable plant-based food wastes for the green synthesis of metal nanoparticles; 1. INTRODUCTION; 2. RENEWABLE SOURCES OF PLANT-BASED FOOD WASTE; 2.1 Terrestrial plant-based food waste sources; 2.2 Marine plant-based food wastes; 2.3 Waste valorization strategies; 3. GREEN SYNTHESIS OF METAL NANOPARTICLES VIA PLANT-BASED FOOD WASTES; 4. TOXICOLOGY AND HEALTH CONCERNS OF METAL NANOPARTICLES
|
505 |
8 |
|
|a 5. TYPES OF METAL NANOPARTICLES PRODUCED BY PLANT-BASED FOOD WASTES5.1 Silver (Ag) nanoparticles; 5.2 Gold (Au) nanoparticles; 5.3 Other metallic nanoparticle forms; 6. POTENTIAL APPLICATIONS FOR GREEN SYNTHESIZED NANOPARTICLES; 7. LIMITING FACTORS PREVENTING DEVELOPMENT AND FUTURE PERSPECTIVES; 7.1 Diversity and variability of the phytochemicals; 7.2 Developing optimal processing conditions; 7.3 Limitations to developing industrial-scale manufacturing; 8. CONCLUDING REMARKS; REFERENCES; 2 -- Nanotechnology and the environment; 1. NANOTECHNOLOGY IN THE NATURAL ENVIRONMENT; 1.1 Introduction
|
505 |
8 |
|
|a 1.2 Transformations1.3 Biological interactions; 1.4 Fate and transport; 2. NANOTECHNOLOGY IN ENVIRONMENTAL ENGINEERING SYSTEMS; 2.1 Introduction; 2.2 Adsorption processes; 2.3 Water filtration; 2.4 Catalysis; 2.5 Concluding remarks; REFERENCES; 3 -- Magnetic materials and magnetic nanocomposites for biomedical application; 1. INTRODUCTION; 2. STRUCTURE AND FORMS; 2.1 Synthesis of iron oxide nanoparticles; 2.2 Physical and chemical properties; 2.2.1 Diamagnetism; 2.2.2 Paramagnetism; 2.2.3 Ferromagnetism; 2.2.4 Antiferromagnetism; 2.2.5 Ferrimagnetism; 2.3 Size (core and hydrodynamic)
|
505 |
8 |
|
|a 3. COLLOIDAL STABILITY OF MAGNETIC NANOPARTICLES3.1 Strategies to enhance colloidal stability of magnetic nanoparticles; 4. BIOMEDICAL APPLICATIONS OF IRON OXIDES; 4.1 Cell separations; 4.2 DNA analysis; 4.3 Magnetic resonance imaging contrast agents; 4.4 Drug delivery; 4.5 Magnetic hyperthermia; 5. IRON OXIDE NANOPARTICLE TOXICITY AND IRON EXCRETION; 6. CONCLUSION; REFERENCES; FURTHER READING; 4 -- Contemporary analysis of the influence of adsorbents on the structure, stability, and reactivity of main group ... ; 1. INTRODUCTION AND THEORY OF RDFT; 1.1 Force; 1.2 Pressure; 1.3 Energy density
|
505 |
8 |
|
|a 1.4 Electronic stress tensor and energy density-related concepts1.4.1 Covalent, metallic, ionic bonds; 1.4.2 Bond strength and reactivity; 1.4.3 Atomic and molecular interface and system dimensions; 1.4.4 Local dielectric response; 2. PROPERTIES OF CLUSTERS, NANOWIRES, NANOTUBES, SHEETS IN TERMS OF RDFT; 2.1 Lithium, aluminum, and gallium clusters; 2.2 Li and Al atoms on graphene sheets and carbon nanotube; 3. UNRAVELING THE NATURE OF D-ELECTRON TRANSITION METALS; 4. CHARACTERIZATION OF DIELECTRIC PROPERTIES IN SYSTEMS WITH F-ELECTRON TRANSITION METALS; 5. CONCLUSIONS; REFERENCES
|
505 |
8 |
|
|a 5 -- A new DLVO-R theory: surface roughness and nanoparticle stability
|
650 |
|
0 |
|a Surfaces (Technology)
|
650 |
|
0 |
|a Nanotechnology.
|
650 |
|
0 |
|a Nanoscience.
|
650 |
|
0 |
|a Molecular dynamics.
|
650 |
|
6 |
|a Surfaces (Technologie)
|0 (CaQQLa)201-0031190
|
650 |
|
6 |
|a Nanosciences.
|0 (CaQQLa)201-0370913
|
650 |
|
6 |
|a Dynamique mol�eculaire.
|0 (CaQQLa)201-0006719
|
650 |
|
6 |
|a Nanotechnologie.
|0 (CaQQLa)201-0225435
|
650 |
|
7 |
|a Molecular dynamics
|2 fast
|0 (OCoLC)fst01024778
|
650 |
|
7 |
|a Nanoscience
|2 fast
|0 (OCoLC)fst01032629
|
650 |
|
7 |
|a Nanotechnology
|2 fast
|0 (OCoLC)fst01032639
|
650 |
|
7 |
|a Surfaces (Technology)
|2 fast
|0 (OCoLC)fst01139278
|
700 |
1 |
|
|a Henry, David.
|
776 |
0 |
8 |
|i Print version:
|a Tiwari, Ashutosh.
|t Harnessing Nanoscale Surface Interactions : Contemporary Synthesis, Applications and Theory.
|d San Diego : Elsevier, �2019
|z 9780128138922
|
830 |
|
0 |
|a Micro & nano technologies.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128138922
|z Texto completo
|