|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1129171520 |
003 |
OCoLC |
005 |
20231120010428.0 |
006 |
m o d |
007 |
cr un|---aucuu |
008 |
191130s2020 cau o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d UKMGB
|d OCLCO
|d OPELS
|d EBLCP
|d OCLCF
|d UKAHL
|d OCLCQ
|d AU@
|d OCLCQ
|d ABC
|d S2H
|d OCLCQ
|d OCLCO
|d SFB
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB9I9262
|2 bnb
|
016 |
7 |
|
|a 019616661
|2 Uk
|
019 |
|
|
|a 1132293716
|
020 |
|
|
|a 9780128118436
|
020 |
|
|
|a 0128118431
|
020 |
|
|
|z 9780128118429
|q (pbk.)
|
035 |
|
|
|a (OCoLC)1129171520
|z (OCoLC)1132293716
|
050 |
|
4 |
|a QC808.6
|
082 |
0 |
4 |
|a 551.0285
|2 23
|
100 |
1 |
|
|a Langer, Horst.
|
245 |
1 |
0 |
|a Advantages and Pitfalls of Pattern Recognition :
|b Selected Cases in Geophysics /
|c Horst Langer, Susanna Falsaperla, Conny Hammer.
|
260 |
|
|
|a San Diego :
|b Elsevier,
|c 2020.
|
300 |
|
|
|a 1 online resource (352 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Computational geophysics series ;
|v v. 3
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Front Cover; Advantages and Pitfalls of Pattern Recognition; Advantages and Pitfalls of Pattern Recognition; Copyright; Contents; Preface; Acknowledgments; I -- From data to methods; 1 -- Patterns, objects, and features; 1.1 Objects and patterns; 1.2 Features; 1.2.1 Types; 1.2.2 Feature vectors; 1.2.3 Feature extraction; 1.2.3.1 Delineating segments; 1.2.3.2 Delineating regions; 1.2.4 Transformations; 1.2.4.1 Karhunen-Lo�eve transformation (Principal Component Analysis); 1.2.4.2 Independent Component Analysis; 1.2.4.3 Fourier transform; 1.2.4.4 Short-time Fourier transform and spectrograms
|
505 |
8 |
|
|a 1.2.4.5 Discrete wavelet transforms1.2.5 Standardization, normalization, and other preprocessing steps; 1.2.5.1 Comments; 1.2.5.2 Outlier removal; 1.2.5.3 Missing data; 1.2.6 Curse of dimensionality; 1.2.7 Feature selection; Appendix 1 Basic notions on statistics; A1.1 Statistical parameters of an ensemble; A1.2 Distinction of ensembles; 2 -- Supervised learning; 2.1 Introduction; 2.2 Discriminant analysis; 2.2.1 Test ban treaty-some history; 2.2.2 The MS-mb criterion for nuclear test identification; 2.2.3 Linear Discriminant Analysis; 2.3 The linear perceptron
|
505 |
8 |
|
|a 2.4 Solving the XOR problem: classification using multilayer perceptrons (MLPs)2.4.1 Nonlinear perceptrons; 2.5 Support vector machines (SVMs); 2.5.1 Linear SVM; 2.5.2 Nonlinear SVM, kernels; 2.6 Hidden Markov Models (HMMs)/sequential data; 2.6.1 Background-from patterns and classes to sequences and processes; 2.6.2 The three problems of HMMs; 2.6.3 Including prior knowledge/model dimensions and topology; 2.6.4 Extension to conditional random fields; 2.7 Bayesian networks; Appendix 2; Appendix 2.1 Fisher's linear discriminant analysis; Appendix 2.2 The perceptron; Backpropagation
|
505 |
8 |
|
|a Appendix 2.3 SVM optimization of the marginsAppendix 2.4. Hidden Markov models; Appendix 2.4.1. Evaluation; Appendix 2.4.2. Decoding-the Viterbi algorithm; Appendix 2.4.3. Training-the expectation-maximization /Baum-Welch algorithm; 3 -- Unsupervised learning; 3.1 Introduction; 3.1.1 Metrics of (dis)similarity; 3.1.2 Clustering; 3.1.2.1 Partitioning clustering; 3.1.2.1.1 Fuzzy clustering; 3.1.2.2 Hierarchical clustering; 3.1.2.3 Density-based clustering; 3.2 Self-Organizing Maps; 3.2.1 Training of an SOM; Appendix 3; Appendix 3.1. Analysis of variance (ANOVA)
|
505 |
8 |
|
|a Appendix 3.2 Minimum distance property for the determinant criterionAppendix 3.3. SOM quality; Topological error; Designing the map; II -- Example applications; 4 -- Applications of supervised learning; 4.1 Introduction; 4.2 Classification of seismic waveforms recorded on volcanoes; 4.2.1 Signal classification of explosion quakes at Stromboli; 4.2.2 Cross-validation issues; 4.3 Infrasound classification; 4.3.1 Infrasound monitoring at Mt Etna-classification with SVM; 4.4 SVM classification of rocks; 4.5 Inversion with MLP; 4.5.1 Identification of parameters governing seismic waveforms
|
500 |
|
|
|a 4.5.2 Integrated inversion of geophysical data
|
650 |
|
0 |
|a Geophysics
|x Data processing.
|
650 |
|
0 |
|a Pattern perception.
|
650 |
|
6 |
|a G�eophysique
|x Informatique.
|0 (CaQQLa)201-0382101
|
650 |
|
6 |
|a Perception des structures.
|0 (CaQQLa)201-0027390
|
650 |
|
7 |
|a Geophysics
|x Data processing
|2 fast
|0 (OCoLC)fst00941009
|
650 |
|
7 |
|a Pattern perception
|2 fast
|0 (OCoLC)fst01055254
|
700 |
1 |
|
|a Falsaperla, Susanna.
|
700 |
1 |
|
|a Hammer, Conny.
|
776 |
0 |
8 |
|i Print version:
|a Langer, Horst.
|t Advantages and Pitfalls of Pattern Recognition : Selected Cases in Geophysics.
|d San Diego : Elsevier, �2019
|z 9780128118429
|
830 |
|
0 |
|a Computational geophysics series ;
|v v. 3.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128118429
|z Texto completo
|