Cargando…

Advantages and Pitfalls of Pattern Recognition : Selected Cases in Geophysics /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Langer, Horst
Otros Autores: Falsaperla, Susanna, Hammer, Conny
Formato: Electrónico eBook
Idioma:Inglés
Publicado: San Diego : Elsevier, 2020.
Colección:Computational geophysics series ; v. 3.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_on1129171520
003 OCoLC
005 20231120010428.0
006 m o d
007 cr un|---aucuu
008 191130s2020 cau o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d UKMGB  |d OCLCO  |d OPELS  |d EBLCP  |d OCLCF  |d UKAHL  |d OCLCQ  |d AU@  |d OCLCQ  |d ABC  |d S2H  |d OCLCQ  |d OCLCO  |d SFB  |d OCLCQ  |d OCLCO 
015 |a GBB9I9262  |2 bnb 
016 7 |a 019616661  |2 Uk 
019 |a 1132293716 
020 |a 9780128118436 
020 |a 0128118431 
020 |z 9780128118429  |q (pbk.) 
035 |a (OCoLC)1129171520  |z (OCoLC)1132293716 
050 4 |a QC808.6 
082 0 4 |a 551.0285  |2 23 
100 1 |a Langer, Horst. 
245 1 0 |a Advantages and Pitfalls of Pattern Recognition :  |b Selected Cases in Geophysics /  |c Horst Langer, Susanna Falsaperla, Conny Hammer. 
260 |a San Diego :  |b Elsevier,  |c 2020. 
300 |a 1 online resource (352 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Computational geophysics series ;  |v v. 3 
588 0 |a Print version record. 
505 0 |a Front Cover; Advantages and Pitfalls of Pattern Recognition; Advantages and Pitfalls of Pattern Recognition; Copyright; Contents; Preface; Acknowledgments; I -- From data to methods; 1 -- Patterns, objects, and features; 1.1 Objects and patterns; 1.2 Features; 1.2.1 Types; 1.2.2 Feature vectors; 1.2.3 Feature extraction; 1.2.3.1 Delineating segments; 1.2.3.2 Delineating regions; 1.2.4 Transformations; 1.2.4.1 Karhunen-Lo�eve transformation (Principal Component Analysis); 1.2.4.2 Independent Component Analysis; 1.2.4.3 Fourier transform; 1.2.4.4 Short-time Fourier transform and spectrograms 
505 8 |a 1.2.4.5 Discrete wavelet transforms1.2.5 Standardization, normalization, and other preprocessing steps; 1.2.5.1 Comments; 1.2.5.2 Outlier removal; 1.2.5.3 Missing data; 1.2.6 Curse of dimensionality; 1.2.7 Feature selection; Appendix 1 Basic notions on statistics; A1.1 Statistical parameters of an ensemble; A1.2 Distinction of ensembles; 2 -- Supervised learning; 2.1 Introduction; 2.2 Discriminant analysis; 2.2.1 Test ban treaty-some history; 2.2.2 The MS-mb criterion for nuclear test identification; 2.2.3 Linear Discriminant Analysis; 2.3 The linear perceptron 
505 8 |a 2.4 Solving the XOR problem: classification using multilayer perceptrons (MLPs)2.4.1 Nonlinear perceptrons; 2.5 Support vector machines (SVMs); 2.5.1 Linear SVM; 2.5.2 Nonlinear SVM, kernels; 2.6 Hidden Markov Models (HMMs)/sequential data; 2.6.1 Background-from patterns and classes to sequences and processes; 2.6.2 The three problems of HMMs; 2.6.3 Including prior knowledge/model dimensions and topology; 2.6.4 Extension to conditional random fields; 2.7 Bayesian networks; Appendix 2; Appendix 2.1 Fisher's linear discriminant analysis; Appendix 2.2 The perceptron; Backpropagation 
505 8 |a Appendix 2.3 SVM optimization of the marginsAppendix 2.4. Hidden Markov models; Appendix 2.4.1. Evaluation; Appendix 2.4.2. Decoding-the Viterbi algorithm; Appendix 2.4.3. Training-the expectation-maximization /Baum-Welch algorithm; 3 -- Unsupervised learning; 3.1 Introduction; 3.1.1 Metrics of (dis)similarity; 3.1.2 Clustering; 3.1.2.1 Partitioning clustering; 3.1.2.1.1 Fuzzy clustering; 3.1.2.2 Hierarchical clustering; 3.1.2.3 Density-based clustering; 3.2 Self-Organizing Maps; 3.2.1 Training of an SOM; Appendix 3; Appendix 3.1. Analysis of variance (ANOVA) 
505 8 |a Appendix 3.2 Minimum distance property for the determinant criterionAppendix 3.3. SOM quality; Topological error; Designing the map; II -- Example applications; 4 -- Applications of supervised learning; 4.1 Introduction; 4.2 Classification of seismic waveforms recorded on volcanoes; 4.2.1 Signal classification of explosion quakes at Stromboli; 4.2.2 Cross-validation issues; 4.3 Infrasound classification; 4.3.1 Infrasound monitoring at Mt Etna-classification with SVM; 4.4 SVM classification of rocks; 4.5 Inversion with MLP; 4.5.1 Identification of parameters governing seismic waveforms 
500 |a 4.5.2 Integrated inversion of geophysical data 
650 0 |a Geophysics  |x Data processing. 
650 0 |a Pattern perception. 
650 6 |a G�eophysique  |x Informatique.  |0 (CaQQLa)201-0382101 
650 6 |a Perception des structures.  |0 (CaQQLa)201-0027390 
650 7 |a Geophysics  |x Data processing  |2 fast  |0 (OCoLC)fst00941009 
650 7 |a Pattern perception  |2 fast  |0 (OCoLC)fst01055254 
700 1 |a Falsaperla, Susanna. 
700 1 |a Hammer, Conny. 
776 0 8 |i Print version:  |a Langer, Horst.  |t Advantages and Pitfalls of Pattern Recognition : Selected Cases in Geophysics.  |d San Diego : Elsevier, �2019  |z 9780128118429 
830 0 |a Computational geophysics series ;  |v v. 3. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128118429  |z Texto completo