Cargando…

Big data mining for climate change /

Delivering a rich understanding of climate-related big data techniques, this comprehensive book highlights how to navigate huge amount of climate data and resources available using big data applications. --

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Zhang, Zhihua (Autor), Li, Jianping (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2020.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_on1128449504
003 OCoLC
005 20231120010425.0
006 m o d
007 cr cnu---unuuu
008 191130s2020 ne o 000 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d N$T  |d OPELS  |d UKMGB  |d OCLCA  |d EBLCP  |d UKAHL  |d OCLCF  |d OCLCQ  |d MYG  |d COO  |d ABC  |d YDX  |d CFI  |d OCLCQ  |d OCLCO  |d SFB  |d OCLCQ 
015 |a GBB9I9306  |2 bnb 
016 7 |a 019616705  |2 Uk 
019 |a 1128033675 
020 |a 9780128187043  |q (electronic bk.) 
020 |a 0128187042  |q (electronic bk.) 
020 |z 9780128187036 
020 |z 0128187034 
035 |a (OCoLC)1128449504  |z (OCoLC)1128033675 
050 4 |a QC981 
082 0 4 |a 333.7  |2 23 
100 1 |a Zhang, Zhihua,  |e author. 
245 1 0 |a Big data mining for climate change /  |c Zhihua Zhang, Jianping Li. 
260 |a Amsterdam :  |b Elsevier,  |c 2020. 
300 |a 1 online resource (346 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF title page (EBSCO, viewed December 4, 2019) 
505 0 |a Front Cover; Big Data Mining for Climate Change; Copyright; Contents; Preface; 1 Big climate data; 1.1 Big data sources; 1.1.1 Earth observation big data; 1.1.2 Climate simulation big data; 1.2 Statistical and dynamical downscaling; 1.3 Data assimilation; 1.3.1 Cressman analysis; 1.3.2 Optimal interpolation analysis; 1.3.3 Three-dimensional variational analysis; 1.3.4 Four-dimensional variational analysis; 1.4 Cloud platforms; 1.4.1 Cloud storage; 1.4.2 Cloud computing; Further reading; 2 Feature extraction of big climate data; 2.1 Clustering; 2.1.1 K-means clustering 
505 8 |a 2.1.2 Hierarchical clustering2.2 Hidden Markov model; 2.3 Expectation maximization; 2.4 Decision trees and random forests; 2.5 Ridge and lasso regressions; 2.6 Linear and quadratic discriminant analysis; 2.6.1 Bayes classi er; 2.6.2 Linear discriminant analysis; 2.6.3 Quadratic discriminant analysis; 2.7 Support vector machines; 2.7.1 Maximal margin classi er; 2.7.2 Support vector classi ers; 2.7.3 Support vector machines; 2.8 Rainfall estimation; 2.9 Flood susceptibility; 2.10 Crop recognition; Further reading; 3 Deep learning for climate patterns; 3.1 Structure of neural networks 
505 8 |a 3.2 Back propagation neural networks3.2.1 Activation functions; 3.2.2 Back propagation algorithms; 3.3 Feedforward multilayer perceptrons; 3.4 Convolutional neural networks; 3.5 Recurrent neural networks; 3.5.1 Input-output recurrent model; 3.5.2 State-space model; 3.5.3 Recurrent multilayer perceptrons; 3.5.4 Second-order network; 3.6 Long short-term memory neural networks; 3.7 Deep networks; 3.7.1 Deep learning; 3.7.2 Boltzmann machine; 3.7.3 Directed logistic belief networks; 3.7.4 Deep belief nets; 3.8 Reinforcement learning; 3.9 Dendroclimatic reconstructions 
505 8 |a 3.10 Downscaling climate variability3.11 Rainfall-runoff modeling; Further reading; 4 Climate networks; 4.1 Understanding climate systems as networks; 4.2 Degree and path; 4.3 Matrix representation of networks; 4.4 Clustering and betweenness; 4.5 Cut sets; 4.6 Trees and planar networks; 4.7 Bipartite networks; 4.8 Centrality; 4.8.1 Degree centrality; 4.8.2 Closeness centrality; 4.8.3 Betweenness centrality; 4.9 Similarity; 4.9.1 Cosine similarity; 4.9.2 Pearson similarity; 4.10 Directed networks; 4.11 Acyclic directed networks; 4.12 Weighted networks; 4.12.1 Vertex strength 
505 8 |a 4.12.2 Weight-degree/weight-weight correlation4.12.3 Weighted clustering; 4.12.4 Shortest path; 4.13 Random walks; 4.14 El Ni�no southern oscillation; 4.15 North Atlantic oscillation; Further reading; 5 Random climate networks and entropy; 5.1 Regular networks; 5.1.1 Fully connected networks; 5.1.2 Regular ring-shaped networks; 5.1.3 Star-shaped networks; 5.2 Random networks; 5.2.1 Giant component; 5.2.2 Small component; 5.3 Con guration networks; 5.3.1 Edge probability and common neighbor; 5.3.2 Degree distribution; 5.3.3 Giant components; 5.3.4 Small components; 5.3.5 Directed random network 
520 |a Delivering a rich understanding of climate-related big data techniques, this comprehensive book highlights how to navigate huge amount of climate data and resources available using big data applications. --  |c Edited summary from book. 
650 0 |a Climatology  |x Statistical methods. 
650 0 |a Data mining. 
650 2 |a Data Mining  |0 (DNLM)D057225 
650 6 |a Exploration de donn�ees (Informatique)  |0 (CaQQLa)201-0300292 
650 7 |a Climatology  |x Statistical methods.  |2 fast  |0 (OCoLC)fst00864308 
650 7 |a Data mining.  |2 fast  |0 (OCoLC)fst00887946 
700 1 |a Li, Jianping,  |e author. 
776 0 8 |i Print version :  |z 9780128187036 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128187036  |z Texto completo