|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1128390818 |
003 |
OCoLC |
005 |
20231120010425.0 |
006 |
m o d |
007 |
cr un|---aucuu |
008 |
191123s2019 cau o 000 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d YDX
|d OPELS
|d UKMGB
|d OCLCF
|d INU
|d OCLCQ
|d UKAHL
|d N$T
|d AU@
|d OCLCQ
|d LVT
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB9I6028
|2 bnb
|
016 |
7 |
|
|a 019610719
|2 Uk
|
019 |
|
|
|a 1128037722
|a 1130759508
|a 1229803709
|
020 |
|
|
|a 012815716X
|
020 |
|
|
|a 9780128157169
|q (electronic bk.)
|
020 |
|
|
|z 9780128157152
|
020 |
|
|
|z 0128157151
|
035 |
|
|
|a (OCoLC)1128390818
|z (OCoLC)1128037722
|z (OCoLC)1130759508
|z (OCoLC)1229803709
|
050 |
|
4 |
|a HF5415.13
|
082 |
0 |
4 |
|a 658.802
|2 23
|
245 |
0 |
0 |
|a Smart delivery systems :
|b solving complex vehicle routing problems /
|c edited by Jakub Nalepa.
|
260 |
|
|
|a San Diego :
|b Elsevier,
|c 2019.
|
300 |
|
|
|a 1 online resource (345 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Intelligent Data-Centric Systems: Sensor Collected Intelligence
|
588 |
0 |
|
|a Print version record.
|
505 |
0 |
|
|a Intro; Title page; Table of Contents; Copyright; Dedication; Contributors; Chapter 1: Current and emerging formulations and models of real-life rich vehicle routing problems; Abstract; Acknowledgement; 1.1. Introduction; 1.2. Vehicle Routing Problem and its variants; 1.3. Bus Routing Problem and its variants; 1.4. Unmanned Vehicle Routing Problem; 1.5. The other routing problems of electric vehicles; 1.6. Conclusions; References; Chapter 2: On a road to optimal fleet routing algorithms: a gentle introduction to the state-of-the-art; Abstract; Acknowledgements; 2.1. Introduction
|
505 |
8 |
|
|a 2.2. Optimal Route Choice problem2.3. Traveling Salesman Problem; 2.4. Vehicle Routing Problem; 2.5. Conclusions; References; Chapter 3: Exact algorithms for solving rich vehicle routing problems; Abstract; 3.1. Branch-and-bound methods; 3.2. Branch-and-cut methods; 3.3. Branch-and-price methods; 3.4. Branch-and-cut-and-price methods; 3.5. Constraint Programming; 3.6. Summary; References; Chapter 4: Heuristics, metaheuristics, and hyperheuristics for rich vehicle routing problems; Abstract; 4.1. Heuristics for rich vehicle routing problems
|
505 |
8 |
|
|a 4.2. Metaheuristics for rich vehicle routing problems4.3. Hyperheuristics for rich vehicle routing problems; 4.4. Summary; References; Chapter 5: Hybrid algorithms for rich vehicle routing problems: a survey; Abstract; 5.1. Introduction; 5.2. Mathematical model for traditional CVRP; 5.3. From traditional VRP to rich VRP; 5.4. Solution approaches for RVRPs; 5.5. Literature review of hybrid approaches for VRPs; 5.6. Conclusion and future directions; References; Chapter 6: Parallel algorithms for solving rich vehicle routing problems; Abstract; 6.1. Parallelism ideas and taxonomies
|
505 |
8 |
|
|a 6.2. Cooperative search strategies6.3. Parallel tabu search; 6.4. Parallel genetic and evolutionary algorithms; 6.5. Parallel memetic algorithms; 6.6. Parallel ant colony algorithms; 6.7. Parallel simulated annealing; 6.8. Summary; References; Chapter 7: Where machine learning meets smart delivery systems; Abstract; Acknowledgements; 7.1. Introduction; 7.2. Tuning hyper-parameters of existent algorithms for solving rich vehicle routing problems using machine learning; 7.3. Solving rich vehicle routing problems using hybrid algorithms that exploit machine learning
|
505 |
8 |
|
|a 7.4. Solving rich vehicle routing problems using data-driven machine learning algorithms7.5. Summary; References; Chapter 8: How to assess your Smart Delivery System?; Abstract; Acknowledgements; 8.1. Introduction; 8.2. Literature review; 8.3. Notation and definition; 8.4. Model description; 8.5. Real-world PostVRP benchmark (RWPostVRPB); 8.6. Final remarks and conclusion; References; Chapter 9: Practical applications of smart delivery systems; Abstract; 9.1. Introduction; 9.2. Literature review; 9.3. Mine evacuation as a rich VRP; 9.4. Evacuation scenario examples
|
500 |
|
|
|a 9.5. Summary and future work
|
650 |
|
0 |
|a Business logistics
|x Computer simulation.
|
650 |
|
0 |
|a Vehicle routing problem.
|
650 |
|
6 |
|a Logistique (Organisation)
|0 (CaQQLa)201-0024063
|x Simulation par ordinateur.
|0 (CaQQLa)201-0379159
|
650 |
|
6 |
|a Probl�emes de tourn�ees.
|0 (CaQQLa)201-0072377
|
650 |
|
7 |
|a Business logistics
|x Computer simulation
|2 fast
|0 (OCoLC)fst00842762
|
650 |
|
7 |
|a Vehicle routing problem
|2 fast
|0 (OCoLC)fst01744165
|
700 |
1 |
|
|a Nalepa, Jakub.
|
776 |
0 |
8 |
|i Print version:
|a Nalepa, Jakub.
|t Smart Delivery Systems.
|d San Diego : Elsevier, �2019
|z 9780128157152
|
830 |
|
0 |
|a Intelligent data centric systems.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128157152
|z Texto completo
|