Cargando…

Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processes /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Venkateswarlu, Ch
Otros Autores: Jujjavarapu, Satya Eswari
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, �2020.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processes; Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processe ... ; Copyright; Contents; About the authors; Preface; 1
  • Basic features and concepts of optimization; 1.1 Introduction; 1.2 Basic features; 1.2.1 Optimization and its benefits; 1.2.2 Scope for optimization; 1.2.3 Illustrative examples; 1.2.4 Essential requisites for optimization; 1.3 Basic concepts; 1.3.1 Functions in optimization
  • 1.3.2 Interpretation of behavior of functions1.3.3 Maxima and minima of functions; 1.3.4 Region of search for constrained optimization; 1.4 Classification and general procedure; 1.4.1 Classification of optimization problems; 1.4.2 General procedure of solving optimization problems; 1.4.3 Bottlenecks in optimization; 1.5 Summary; References; 2
  • Classical analytical methods of optimization; 2.1 Introduction; 2.2 Statement of optimization problem; 2.3 Analytical methods for unconstrained single-variable functions; 2.3.1 Necessary and sufficient conditions
  • 2.3.2 Sufficient conditions for convexity and concavity of a function2.4 Analytical methods for unconstrained multivariable functions; 2.4.1 Necessary and sufficient conditions; 2.4.2 Two-variable function; 2.4.3 Multivariable function; 2.5 Analytical methods for multivariable optimization problems with equality constraints; 2.5.1 Direct substitution; 2.5.2 Penalty function approach; 2.5.3 Method of Lagrange multipliers; 2.5.3.1 Necessary condition for a basic problem; 2.5.3.2 Necessary condition for a general problem; 2.5.3.3 Sufficient conditions for a general problem
  • 2.6 Analytical methods for solving multivariable optimization problems with inequality constraints2.6.1 Kuhn-Tucker conditions for problems with inequality constraints; 2.6.2 Kuhn-Tucker conditions for problems with inequality and equality constraints; 2.7 Limitations of classical optimization methods; 2.8 Summary; References; 3
  • Numerical search methods for unconstrained optimization problems; 3.1 Introduction; 3.2 Classification of numerical search methods; 3.2.1 Direct search methods; 3.2.2 Gradient search methods; 3.3 One-dimensional gradient search methods; 3.3.1 Newton's method
  • 3.3.2 Quasi-Newton method3.3.3 Secant method; 3.4 Polynomial approximation methods; 3.4.1 Quadratic interpolation method; 3.4.2 Cubic interpolation method; 3.5 Multivariable direct search methods; 3.5.1 Univariate search method; 3.5.2 Hooke-Jeeves pattern search method; 3.5.2.1 Exploratory move; 3.5.2.2 Pattern move; 3.5.3 Powell's conjugate direction method; 3.5.4 Nelder-Mead simplex method; 3.6 Multivariable gradient search methods; 3.6.1 Steepest descent method; 3.6.2 Multivariable Newton's method; 3.6.3 Conjugate gradient method; 3.7 Summary; References
  • 4
  • Stochastic and evolutionary optimization algorithms