|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1128383006 |
003 |
OCoLC |
005 |
20231120010425.0 |
006 |
m o d |
007 |
cr un|---aucuu |
008 |
191123s2020 ne a ob 001 0 eng d |
040 |
|
|
|a EBLCP
|b eng
|e pn
|c EBLCP
|d YDX
|d OPELS
|d OCLCF
|d OCLCQ
|d SFB
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|
019 |
|
|
|a 1128196229
|a 1128827403
|
020 |
|
|
|a 9780128173930
|
020 |
|
|
|a 0128173939
|
020 |
|
|
|z 9780128173923
|
020 |
|
|
|z 0128173920
|
035 |
|
|
|a (OCoLC)1128383006
|z (OCoLC)1128196229
|z (OCoLC)1128827403
|
050 |
|
4 |
|a QA274
|
082 |
0 |
4 |
|a 519.2/3
|2 23
|
100 |
1 |
|
|a Venkateswarlu, Ch.
|
245 |
1 |
0 |
|a Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processes /
|c Ch. Venkateswarlu, Satya Eswari Jujjavarapu.
|
264 |
|
1 |
|a Amsterdam :
|b Elsevier,
|c �2020.
|
300 |
|
|
|a 1 online resource (312 pages) :
|b illustrations
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Online resource, title from digital title page (viewed on October 8, 2020).
|
505 |
0 |
|
|a Front Cover; Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processes; Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processe ... ; Copyright; Contents; About the authors; Preface; 1 -- Basic features and concepts of optimization; 1.1 Introduction; 1.2 Basic features; 1.2.1 Optimization and its benefits; 1.2.2 Scope for optimization; 1.2.3 Illustrative examples; 1.2.4 Essential requisites for optimization; 1.3 Basic concepts; 1.3.1 Functions in optimization
|
505 |
8 |
|
|a 1.3.2 Interpretation of behavior of functions1.3.3 Maxima and minima of functions; 1.3.4 Region of search for constrained optimization; 1.4 Classification and general procedure; 1.4.1 Classification of optimization problems; 1.4.2 General procedure of solving optimization problems; 1.4.3 Bottlenecks in optimization; 1.5 Summary; References; 2 -- Classical analytical methods of optimization; 2.1 Introduction; 2.2 Statement of optimization problem; 2.3 Analytical methods for unconstrained single-variable functions; 2.3.1 Necessary and sufficient conditions
|
505 |
8 |
|
|a 2.3.2 Sufficient conditions for convexity and concavity of a function2.4 Analytical methods for unconstrained multivariable functions; 2.4.1 Necessary and sufficient conditions; 2.4.2 Two-variable function; 2.4.3 Multivariable function; 2.5 Analytical methods for multivariable optimization problems with equality constraints; 2.5.1 Direct substitution; 2.5.2 Penalty function approach; 2.5.3 Method of Lagrange multipliers; 2.5.3.1 Necessary condition for a basic problem; 2.5.3.2 Necessary condition for a general problem; 2.5.3.3 Sufficient conditions for a general problem
|
505 |
8 |
|
|a 2.6 Analytical methods for solving multivariable optimization problems with inequality constraints2.6.1 Kuhn-Tucker conditions for problems with inequality constraints; 2.6.2 Kuhn-Tucker conditions for problems with inequality and equality constraints; 2.7 Limitations of classical optimization methods; 2.8 Summary; References; 3 -- Numerical search methods for unconstrained optimization problems; 3.1 Introduction; 3.2 Classification of numerical search methods; 3.2.1 Direct search methods; 3.2.2 Gradient search methods; 3.3 One-dimensional gradient search methods; 3.3.1 Newton's method
|
505 |
8 |
|
|a 3.3.2 Quasi-Newton method3.3.3 Secant method; 3.4 Polynomial approximation methods; 3.4.1 Quadratic interpolation method; 3.4.2 Cubic interpolation method; 3.5 Multivariable direct search methods; 3.5.1 Univariate search method; 3.5.2 Hooke-Jeeves pattern search method; 3.5.2.1 Exploratory move; 3.5.2.2 Pattern move; 3.5.3 Powell's conjugate direction method; 3.5.4 Nelder-Mead simplex method; 3.6 Multivariable gradient search methods; 3.6.1 Steepest descent method; 3.6.2 Multivariable Newton's method; 3.6.3 Conjugate gradient method; 3.7 Summary; References
|
505 |
8 |
|
|a 4 -- Stochastic and evolutionary optimization algorithms
|
504 |
|
|
|a Includes bibliographical references and index.
|
650 |
|
0 |
|a Stochastic processes.
|
650 |
|
2 |
|a Stochastic Processes
|0 (DNLM)D013269
|
650 |
|
6 |
|a Processus stochastiques.
|0 (CaQQLa)201-0002663
|
650 |
|
7 |
|a Stochastic processes.
|2 fast
|0 (OCoLC)fst01133519
|
700 |
1 |
|
|a Jujjavarapu, Satya Eswari.
|
776 |
0 |
8 |
|i Print version:
|a Venkateswarlu, Ch.
|t Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processes.
|d San Diego : Elsevier, �2019
|z 9780128173923
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128173923
|z Texto completo
|