Cargando…

Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processes /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Venkateswarlu, Ch
Otros Autores: Jujjavarapu, Satya Eswari
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, �2020.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_on1128383006
003 OCoLC
005 20231120010425.0
006 m o d
007 cr un|---aucuu
008 191123s2020 ne a ob 001 0 eng d
040 |a EBLCP  |b eng  |e pn  |c EBLCP  |d YDX  |d OPELS  |d OCLCF  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ 
019 |a 1128196229  |a 1128827403 
020 |a 9780128173930 
020 |a 0128173939 
020 |z 9780128173923 
020 |z 0128173920 
035 |a (OCoLC)1128383006  |z (OCoLC)1128196229  |z (OCoLC)1128827403 
050 4 |a QA274 
082 0 4 |a 519.2/3  |2 23 
100 1 |a Venkateswarlu, Ch. 
245 1 0 |a Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processes /  |c Ch. Venkateswarlu, Satya Eswari Jujjavarapu. 
264 1 |a Amsterdam :  |b Elsevier,  |c �2020. 
300 |a 1 online resource (312 pages) :  |b illustrations 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource, title from digital title page (viewed on October 8, 2020). 
505 0 |a Front Cover; Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processes; Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processe ... ; Copyright; Contents; About the authors; Preface; 1 -- Basic features and concepts of optimization; 1.1 Introduction; 1.2 Basic features; 1.2.1 Optimization and its benefits; 1.2.2 Scope for optimization; 1.2.3 Illustrative examples; 1.2.4 Essential requisites for optimization; 1.3 Basic concepts; 1.3.1 Functions in optimization 
505 8 |a 1.3.2 Interpretation of behavior of functions1.3.3 Maxima and minima of functions; 1.3.4 Region of search for constrained optimization; 1.4 Classification and general procedure; 1.4.1 Classification of optimization problems; 1.4.2 General procedure of solving optimization problems; 1.4.3 Bottlenecks in optimization; 1.5 Summary; References; 2 -- Classical analytical methods of optimization; 2.1 Introduction; 2.2 Statement of optimization problem; 2.3 Analytical methods for unconstrained single-variable functions; 2.3.1 Necessary and sufficient conditions 
505 8 |a 2.3.2 Sufficient conditions for convexity and concavity of a function2.4 Analytical methods for unconstrained multivariable functions; 2.4.1 Necessary and sufficient conditions; 2.4.2 Two-variable function; 2.4.3 Multivariable function; 2.5 Analytical methods for multivariable optimization problems with equality constraints; 2.5.1 Direct substitution; 2.5.2 Penalty function approach; 2.5.3 Method of Lagrange multipliers; 2.5.3.1 Necessary condition for a basic problem; 2.5.3.2 Necessary condition for a general problem; 2.5.3.3 Sufficient conditions for a general problem 
505 8 |a 2.6 Analytical methods for solving multivariable optimization problems with inequality constraints2.6.1 Kuhn-Tucker conditions for problems with inequality constraints; 2.6.2 Kuhn-Tucker conditions for problems with inequality and equality constraints; 2.7 Limitations of classical optimization methods; 2.8 Summary; References; 3 -- Numerical search methods for unconstrained optimization problems; 3.1 Introduction; 3.2 Classification of numerical search methods; 3.2.1 Direct search methods; 3.2.2 Gradient search methods; 3.3 One-dimensional gradient search methods; 3.3.1 Newton's method 
505 8 |a 3.3.2 Quasi-Newton method3.3.3 Secant method; 3.4 Polynomial approximation methods; 3.4.1 Quadratic interpolation method; 3.4.2 Cubic interpolation method; 3.5 Multivariable direct search methods; 3.5.1 Univariate search method; 3.5.2 Hooke-Jeeves pattern search method; 3.5.2.1 Exploratory move; 3.5.2.2 Pattern move; 3.5.3 Powell's conjugate direction method; 3.5.4 Nelder-Mead simplex method; 3.6 Multivariable gradient search methods; 3.6.1 Steepest descent method; 3.6.2 Multivariable Newton's method; 3.6.3 Conjugate gradient method; 3.7 Summary; References 
505 8 |a 4 -- Stochastic and evolutionary optimization algorithms 
504 |a Includes bibliographical references and index. 
650 0 |a Stochastic processes. 
650 2 |a Stochastic Processes  |0 (DNLM)D013269 
650 6 |a Processus stochastiques.  |0 (CaQQLa)201-0002663 
650 7 |a Stochastic processes.  |2 fast  |0 (OCoLC)fst01133519 
700 1 |a Jujjavarapu, Satya Eswari. 
776 0 8 |i Print version:  |a Venkateswarlu, Ch.  |t Stochastic Global Optimization Methods and Applications to Chemical, Biochemical, Pharmaceutical and Environmental Processes.  |d San Diego : Elsevier, �2019  |z 9780128173923 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128173923  |z Texto completo