Cargando…

Flexible Bayesian regression modelling /

Flexible Bayesian Regression Modeling is a step-by-step guide to the Bayesian revolution in regression modeling, for use in advanced econometric and statistical analysis where datasets are characterized by complexity, multiplicity, and large sample sizes, necessitating the need for considerable flex...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Fan, Y. (Yanan) (Editor ), Nott, David (Editor ), Smith, Mike S. (Editor ), Dortet-Bernadet, Jean-Luc (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, United Kingdom ; San Diego, CA, United States : Academic Press, [2020]
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1127850237
003 OCoLC
005 20231120010422.0
006 m o d
007 cr |||||||||||
008 191011s2020 enka ob 001 0 eng d
040 |a UKMGB  |b eng  |e rda  |e pn  |c UKMGB  |d YDXIT  |d OCLCF  |d N$T  |d OPELS  |d WAU  |d IAC  |d OCLCO  |d OCLCQ  |d OCLCO  |d SFB  |d OCLCQ  |d OCLCO 
015 |a GBB9H1888  |2 bnb 
016 7 |a 019576789  |2 Uk 
020 |a 0128158638 
020 |a 9780128158630  |q (electronic bk.) 
020 |z 9780128158623  |q (pbk.) 
035 |a (OCoLC)1127850237 
050 4 |a QA278.2  |b .F54 2019 
082 0 4 |a 519.536  |2 23 
245 0 0 |a Flexible Bayesian regression modelling /  |c edited by Yanan Fan, David Nott, Mike S. Smith, Jean-Luc Dortet-Bernadet. 
264 1 |a London, United Kingdom ;  |a San Diego, CA, United States :  |b Academic Press,  |c [2020] 
300 |a 1 online resource (xiv, 288 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
504 |a Includes bibliographical references and index. 
520 |a Flexible Bayesian Regression Modeling is a step-by-step guide to the Bayesian revolution in regression modeling, for use in advanced econometric and statistical analysis where datasets are characterized by complexity, multiplicity, and large sample sizes, necessitating the need for considerable flexibility in modeling techniques. It reviews three forms of flexibility: methods which provide flexibility in their error distribution; methods which model non-central parts of the distribution (such as quantile regression); and finally models that allow the mean function to be flexible (such as spline models). Each chapter discusses the key aspects of fitting a regression model. R programs accompany the methods. This book is particularly relevant to non-specialist practitioners with intermediate mathematical training seeking to apply Bayesian approaches in economics, biology, finance, engineering and medicine. 
505 0 |a Contributors -- Preface -- 1. Bayesian quantile regression with the asymmetric Laplace distribution -- 2. A vignette on model-based quantile regression: analyzing excess-zero response -- 3. Bayesian nonparametric density regression for ordinal responses -- 4. Non-standard flexible regression via variational Bayes -- 5. Bayesian mixed binary-continuous copula regression with an application to childhood undernutrition -- 6. Bayesian nonparametric methods for financial and microeconomic time series analysis -- 7. Bayesian spectral analysis regression -- 8. Flexible regression modelling under shape constraints -- 9. Scalable Bayesian variable selection for a negative binomial regression models -- Index. 
588 0 |a Print version record; online resource viewed February 5, 2021. 
650 0 |a Regression analysis  |x Mathematical models. 
650 0 |a Bayesian statistical decision theory. 
650 6 |a Th�eorie de la d�ecision bay�esienne.  |0 (CaQQLa)000272233 
650 7 |a Bayesian statistical decision theory  |2 fast  |0 (OCoLC)fst00829019 
650 7 |a Regression analysis  |x Mathematical models  |2 fast  |0 (OCoLC)fst01093277 
700 1 |a Fan, Y.  |q (Yanan),  |e editor. 
700 1 |a Nott, David,  |e editor. 
700 1 |a Smith, Mike S.,  |e editor. 
700 1 |a Dortet-Bernadet, Jean-Luc,  |e editor. 
776 0 8 |t Flexible Bayesian regression modelling.  |d London, United Kingdom ; San Diego, CA, United States : Academic Press, [2020]  |z 9780128158623  |w (OCoLC)1124324001 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128158623  |z Texto completo