Cargando…

Spatial regression analysis using Eigenvector spatial filtering /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Griffith, Daniel A.
Otros Autores: Chun, Yongwan, Li, Bin (Professor of geography)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: [Place of publication not identified] : Academic Press, 2019.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 a 4500
001 SCIDIR_on1121293860
003 OCoLC
005 20231120010414.0
006 m o d
007 cr |n|||||||||
008 191003s2019 xx o 000 0 eng d
040 |a YDX  |b eng  |e pn  |c YDX  |d OPELS  |d UKMGB  |d EBLCP  |d OCLCF  |d SFB  |d OCLCQ  |d N$T  |d OCLCQ  |d S2H  |d UKAHL  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d OSU  |d OCLCO 
015 |a GBB9E0056  |2 bnb 
016 7 |a 019504412  |2 Uk 
019 |a 1125855922 
020 |a 9780128156926  |q (electronic bk.) 
020 |a 0128156929  |q (electronic bk.) 
020 |a 0128150432 
020 |a 9780128150436 
035 |a (OCoLC)1121293860  |z (OCoLC)1125855922 
050 4 |a QA278.2 
082 0 4 |a 519.536  |2 23 
100 1 |a Griffith, Daniel A. 
245 1 0 |a Spatial regression analysis using Eigenvector spatial filtering /  |c Daniel A. Griffith, Yongwan Chun, Bin Li. 
260 |a [Place of publication not identified] :  |b Academic Press,  |c 2019. 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Front Cover; Spatial Regression Analysis Using Eigenvector Spatial Filtering; Copyright; Dedication; Contents; Foreword; Moran eigenvector spatial filtering: Multiple origins and convergence; A word about the theoretical background for MESF in ecology; Extensions and the future of MESF analysis; References; Preface; Data description; A preview of the book's content; References; Chapter 1: Spatial autocorrelation; 1.1. Defining SA; 1.1.1. A mathematical formularization of the first law of geography; 1.1.2. Quantifying spatial relationships: The spatial weights matrix 
505 8 |a 1.1.3. Different measurements for different data types: Quantifying SA1.1.4. The MC: Distributional theory; 1.2. Impacts of SA on attribute statistical distributions; 1.2.1. Effects of spatial dependence: Deviating from independent observations; 1.2.2. SA and the Moran scatterplot; 1.2.3. SA and histograms; 1.3. Summary; Appendix 1.A. The mean and variance of the MC for linear regression residuals; References; Chapter 2: An introduction to spectral analysis; 2.1. Representing SA in the spectral domain; 2.1.1. SA: From a spatial frequency to a spatial spectral domain 
505 8 |a 2.1.2. Eigenvalues and eigenvectors2.1.3. Principal components analysis: A reconnaissance; 2.1.4. The spectral decomposition of a modified SWM; 2.1.5. Representing the MC with eigenfunctions; 2.1.6. Visualizing map patterns with eigenvectors; 2.2. The spectral analysis of one-dimensional data; 2.3. The spectral analysis of two-dimensional data; 2.4. The spectral analysis of three-dimensional data; 2.5. Summary; Appendix 2.A. The spectral decomposition of a SWM; References; Chapter 3: MESF and linear regression; 3.1. A theoretical foundation for ESFs; 3.1.1. The fundamental theorem of MESF 
505 8 |a 3.1.2. Map pattern and SA: Heterogeneity in map-wide trends3.2. Estimating an ESF as an OLS problem: An illustrative linear regression example; 3.2.1. The selection of eigenvectors to construct an ESF; 3.2.2. Selected criteria for assessing regression models: The PRESS statistic, residual diagnostics, and multicollinearity; 3.2.3. Interpreting an ESF and its parameter estimates; 3.2.4. Comparisons between ESF and SAR model specification results; 3.3. Simulation experiments based upon ESFs; 3.4. ESF prediction with linear regression; 3.5. Summary; References 
505 8 |a Chapter 4: Software implementation for constructing an ESF, with special reference to linear regression4.1. Software implementation; 4.2. Geographic scale and resolution issues for ESFs; 4.3. Determining the candidate set of eigenvectors; 4.4. Extensions to large georeferenced datasets: Implications for big spatial data; 4.4.1. A validation demonstration for approximate ESFs; 4.4.2. An exploration of a massively large remotely sensed image; 4.4.3. Correct SWM eigenvectors for a regular square tessellation; 4.5. Summary 
650 0 |a Spatial analysis (Statistics) 
650 0 |a Regression analysis. 
650 0 |a Eigenvectors. 
650 2 |a Regression Analysis  |0 (DNLM)D012044 
650 6 |a Analyse spatiale (Statistique)  |0 (CaQQLa)201-0026934 
650 6 |a Analyse de r�egression.  |0 (CaQQLa)201-0046529 
650 6 |a Vecteurs.  |0 (CaQQLa)201-0069894 
650 7 |a spatial analysis.  |2 aat  |0 (CStmoGRI)aat300223990 
650 7 |a Eigenvectors  |2 fast  |0 (OCoLC)fst00904034 
650 7 |a Regression analysis  |2 fast  |0 (OCoLC)fst01432090 
650 7 |a Spatial analysis (Statistics)  |2 fast  |0 (OCoLC)fst01128784 
700 1 |a Chun, Yongwan. 
700 1 |a Li, Bin  |c (Professor of geography) 
776 0 8 |i Print version:  |z 9780128156926 
776 0 8 |i Print version:  |a Griffith, Daniel A.  |t Spatial regression analysis using Eigenvector spatial filtering.  |d [Place of publication not identified] : Academic Press, 2019  |z 0128150432  |z 9780128150436  |w (OCoLC)1082237895 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128150436  |z Texto completo