|
|
|
|
LEADER |
00000cam a2200000 a 4500 |
001 |
SCIDIR_on1121293860 |
003 |
OCoLC |
005 |
20231120010414.0 |
006 |
m o d |
007 |
cr |n||||||||| |
008 |
191003s2019 xx o 000 0 eng d |
040 |
|
|
|a YDX
|b eng
|e pn
|c YDX
|d OPELS
|d UKMGB
|d EBLCP
|d OCLCF
|d SFB
|d OCLCQ
|d N$T
|d OCLCQ
|d S2H
|d UKAHL
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d OSU
|d OCLCO
|
015 |
|
|
|a GBB9E0056
|2 bnb
|
016 |
7 |
|
|a 019504412
|2 Uk
|
019 |
|
|
|a 1125855922
|
020 |
|
|
|a 9780128156926
|q (electronic bk.)
|
020 |
|
|
|a 0128156929
|q (electronic bk.)
|
020 |
|
|
|a 0128150432
|
020 |
|
|
|a 9780128150436
|
035 |
|
|
|a (OCoLC)1121293860
|z (OCoLC)1125855922
|
050 |
|
4 |
|a QA278.2
|
082 |
0 |
4 |
|a 519.536
|2 23
|
100 |
1 |
|
|a Griffith, Daniel A.
|
245 |
1 |
0 |
|a Spatial regression analysis using Eigenvector spatial filtering /
|c Daniel A. Griffith, Yongwan Chun, Bin Li.
|
260 |
|
|
|a [Place of publication not identified] :
|b Academic Press,
|c 2019.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Front Cover; Spatial Regression Analysis Using Eigenvector Spatial Filtering; Copyright; Dedication; Contents; Foreword; Moran eigenvector spatial filtering: Multiple origins and convergence; A word about the theoretical background for MESF in ecology; Extensions and the future of MESF analysis; References; Preface; Data description; A preview of the book's content; References; Chapter 1: Spatial autocorrelation; 1.1. Defining SA; 1.1.1. A mathematical formularization of the first law of geography; 1.1.2. Quantifying spatial relationships: The spatial weights matrix
|
505 |
8 |
|
|a 1.1.3. Different measurements for different data types: Quantifying SA1.1.4. The MC: Distributional theory; 1.2. Impacts of SA on attribute statistical distributions; 1.2.1. Effects of spatial dependence: Deviating from independent observations; 1.2.2. SA and the Moran scatterplot; 1.2.3. SA and histograms; 1.3. Summary; Appendix 1.A. The mean and variance of the MC for linear regression residuals; References; Chapter 2: An introduction to spectral analysis; 2.1. Representing SA in the spectral domain; 2.1.1. SA: From a spatial frequency to a spatial spectral domain
|
505 |
8 |
|
|a 2.1.2. Eigenvalues and eigenvectors2.1.3. Principal components analysis: A reconnaissance; 2.1.4. The spectral decomposition of a modified SWM; 2.1.5. Representing the MC with eigenfunctions; 2.1.6. Visualizing map patterns with eigenvectors; 2.2. The spectral analysis of one-dimensional data; 2.3. The spectral analysis of two-dimensional data; 2.4. The spectral analysis of three-dimensional data; 2.5. Summary; Appendix 2.A. The spectral decomposition of a SWM; References; Chapter 3: MESF and linear regression; 3.1. A theoretical foundation for ESFs; 3.1.1. The fundamental theorem of MESF
|
505 |
8 |
|
|a 3.1.2. Map pattern and SA: Heterogeneity in map-wide trends3.2. Estimating an ESF as an OLS problem: An illustrative linear regression example; 3.2.1. The selection of eigenvectors to construct an ESF; 3.2.2. Selected criteria for assessing regression models: The PRESS statistic, residual diagnostics, and multicollinearity; 3.2.3. Interpreting an ESF and its parameter estimates; 3.2.4. Comparisons between ESF and SAR model specification results; 3.3. Simulation experiments based upon ESFs; 3.4. ESF prediction with linear regression; 3.5. Summary; References
|
505 |
8 |
|
|a Chapter 4: Software implementation for constructing an ESF, with special reference to linear regression4.1. Software implementation; 4.2. Geographic scale and resolution issues for ESFs; 4.3. Determining the candidate set of eigenvectors; 4.4. Extensions to large georeferenced datasets: Implications for big spatial data; 4.4.1. A validation demonstration for approximate ESFs; 4.4.2. An exploration of a massively large remotely sensed image; 4.4.3. Correct SWM eigenvectors for a regular square tessellation; 4.5. Summary
|
650 |
|
0 |
|a Spatial analysis (Statistics)
|
650 |
|
0 |
|a Regression analysis.
|
650 |
|
0 |
|a Eigenvectors.
|
650 |
|
2 |
|a Regression Analysis
|0 (DNLM)D012044
|
650 |
|
6 |
|a Analyse spatiale (Statistique)
|0 (CaQQLa)201-0026934
|
650 |
|
6 |
|a Analyse de r�egression.
|0 (CaQQLa)201-0046529
|
650 |
|
6 |
|a Vecteurs.
|0 (CaQQLa)201-0069894
|
650 |
|
7 |
|a spatial analysis.
|2 aat
|0 (CStmoGRI)aat300223990
|
650 |
|
7 |
|a Eigenvectors
|2 fast
|0 (OCoLC)fst00904034
|
650 |
|
7 |
|a Regression analysis
|2 fast
|0 (OCoLC)fst01432090
|
650 |
|
7 |
|a Spatial analysis (Statistics)
|2 fast
|0 (OCoLC)fst01128784
|
700 |
1 |
|
|a Chun, Yongwan.
|
700 |
1 |
|
|a Li, Bin
|c (Professor of geography)
|
776 |
0 |
8 |
|i Print version:
|z 9780128156926
|
776 |
0 |
8 |
|i Print version:
|a Griffith, Daniel A.
|t Spatial regression analysis using Eigenvector spatial filtering.
|d [Place of publication not identified] : Academic Press, 2019
|z 0128150432
|z 9780128150436
|w (OCoLC)1082237895
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128150436
|z Texto completo
|