Cargando…

Energy Sustainability /

Energy Sustainability is a subject with many dimensions that spans both production and utilization and how they are linked to sustainable development. More importantly, energy systems are designed, analyzed, assessed and evaluated in accordance to sustainable tools for more sustainable future. This...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Din�cer, �Ibrahim, 1964-
Otros Autores: Abu-Rayash, Azzam
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London : Academic Press, �2020.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Energy Sustainability; Energy Sustainability; Copyright; Contents; Preface; 1
  • Fundamental aspects of energy, environment, and sustainability; 1.1 Introduction; 1.2 Energy; 1.2.1 Energy forms; 1.2.2 Energy history; 1.2.3 Thermodynamics; 1.3 Environment; 1.3.1 Environmental impact; 1.3.2 Climate change and global warming; 1.3.3 Energy and the environment; 1.4 Sustainability; 1.5 Closing remarks; 2
  • Energy sources; 2.1 Introduction; 2.2 Fossil fuels; 2.2.1 Coal; 2.2.2 Oil, petroleum, and natural gas; 2.3 Nuclear energy; 2.4 Renewable energy; 2.4.1 Wind; 2.4.2 Solar
  • 2.4.3 Geothermal2.4.4 Tidal and wave; 2.4.5 Biomass and biofuel; 2.4.6 Hydro; 2.4.7 Hydrogen; 2.5 Closing remarks; 3
  • Energy systems; 3.1 Introduction; 3.2 Power-generating systems; 3.2.1 Fossil-fuel power plants; 3.2.2 Nuclear power plants; 3.2.3 Geothermal power plants; 3.2.4 Solar power plants; 3.2.5 Wind power plants; 3.2.6 Biomass power plants; 3.3 Heating systems; 3.3.1 Solar heating systems; 3.3.2 Geothermal heating systems; 3.3.3 Biomass heating systems; 3.3.4 Heat pumps; 3.4 Refrigeration systems; 3.5 Refineries; 3.6 Closing remarks; 4
  • Energy services; 4.1 Introduction
  • 4.2 Electricity4.3 Heating and cooling; 4.4 Closing remarks; 5
  • Community energy systems; 5.1 Introduction; 5.2 Combined heat and power; 5.3 Fuel cells; 5.4 Photovoltaic thermal energy systems; 5.5 Hybrid energy systems; 5.6 Microgrids; 5.7 District heating systems; 5.8 District cooling systems; 5.9 Thermal energy storage; 5.10 Cogeneration systems; 5.11 Trigeneration systems; 5.12 Closing remarks; 6
  • Sustainability modeling; 6.1 Introduction; 6.2 Sustainability assessment categories; 6.2.1 Energy aspect; 6.2.2 Exergy aspect; 6.2.3 Economic impact; 6.2.4 Technology; 6.2.5 Social aspect
  • 6.2.6 Environmental impact6.2.7 Education; 6.2.8 Size factor; 6.2.9 Summary; 6.3 Indicators; 6.4 Model development and framework; 6.4.1 Methodology; 6.4.1.1 Energy aspect; 6.4.1.1.1 Energy efficiency; 6.4.1.1.2 Production rate; 6.4.1.2 Exergy aspect; 6.4.1.2.1 Exergy efficiency; 6.4.1.2.2 Exergy destruction ratio; 6.4.1.3 Environmental impact; 6.4.1.3.1 Global warming potential; 6.4.1.3.2 Stratospheric ozone depletion potential; 6.4.1.3.3 Acidification potential; 6.4.1.3.4 Eutrophication potential; 6.4.1.3.5 Air toxicity; 6.4.1.3.6 Water ecotoxicity; 6.4.1.3.7 Smog air
  • 6.4.1.3.8 Water consumption6.4.1.3.9 Abiotic depletion potential; 6.4.1.4 Economic impact; 6.4.1.4.1 Benefit-cost ratio; 6.4.1.4.2 Payback time; 6.4.1.4.3 Levelized cost of electricity/energy; 6.4.1.4.4 Operation and maintenance cost; 6.4.1.5 Technology; 6.4.1.5.1 Commercializability; 6.4.1.5.2 Technology readiness; 6.4.1.5.3 Innovation; 6.4.1.6 Social aspect; 6.4.1.6.1 Job creation; 6.4.1.6.2 Public awareness; 6.4.1.6.3 Social acceptance; 6.4.1.6.4 Social cost; 6.4.1.6.5 Human welfare; 6.4.1.6.6 Human health; 6.4.1.7 Education; 6.4.1.7.1 Staff training; 6.4.1.7.2 Educational level of staff