Cargando…

Size effects in plasticity : from macro to nano /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Voyiadjis, George Z., 1946- (Autor), Yaghoobi, Mohammadreza (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, United Kingdom ; San Diego, Ca, United States : Academic Press, an imprint of Elsevier, [2019]
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Size Effects in Plasticity: From Macro to Nano; Copyright; Dedication; Contents; About the Authors; Acknowledgments; Chapter 1: Introduction: Size effects in materials; 1.1. Brittle materials; 1.2. Quasibrittle materials; 1.2.1. Failure while the structure has a stable large crack or a deep notch; 1.2.2. Failure at crack initiation; 1.3. Crystalline metals; 1.3.1. Intrinsic size effects; 1.3.1.1. Precipitates size; 1.3.1.2. Grain size; 1.3.1.2.1. Hall-Petch effect; 1.3.1.2.1.1. Dislocation pile-up model; 1.3.1.2.1.2. Dislocation generation from grain boundary ledges
  • 1.3.1.2.1.3. Dislocation density model1.3.1.2.1.4. Non-homogenous plastic deformation model; 1.3.1.2.2. Inverse Hall-Petch effect; 1.3.1.2.2.1. Breakdown in dislocation pile-up model; 1.3.1.2.2.2. Grain boundary sliding; 1.3.1.2.2.3. Phase mixture model; 1.3.2. Extrinsic size effects; 1.3.2.1. Thin films; 1.3.2.1.1. Interaction of size effects due to the thin film thickness and grain size; 1.3.2.2. Pillars; 1.3.2.2.1. Source truncation; 1.3.2.2.2. Source exhaustion; 1.3.2.2.3. Weakest link theory; 1.3.2.2.4. Interaction of size effects due to the pillar diameter and grain size
  • 1.3.2.3. NanoindentationReferences; Further reading; Chapter 2: Nonlocal continuum plasticity; 2.1. Introduction; 2.2. Small strain plasticity: Local models; 2.2.1. Strain additive decomposition; 2.2.2. Yield criterion; 2.2.3. Loading criteria; 2.2.4. Plastic potential and flow rule; 2.2.5. Hardening rules; 2.2.5.1. Loading criterion; 2.2.5.2. Isotropic hardening; 2.2.5.3. Kinematic hardening; 2.2.5.4. Mixed hardening; 2.2.6. Incremental stress-strain relation for a material with mixed hardening; 2.2.7. Thermodynamically consistent plasticity models
  • 2.2.8. Rate-dependent plasticity: Models with the von Mises yield surface2.2.8.1. Bingham model; 2.2.8.2. Perzyna model; 2.2.8.3. Peric model; 2.2.9. Rate-dependent plasticity models without a yield surface; 2.3. Small strain plasticity: Nonlocal models; 2.3.1. Gradient plasticity models; 2.3.1.1. Gradient elasticity models; 2.3.1.2. Gradient plasticity models: Fleck and Hutchinson; 2.3.1.3. Gradient plasticity models: Aifantis and his co-workers; 2.3.1.4. Gradient ductile damage: Geers and coworkers; 2.3.1.5. Gradient plasticity models: Gurtin and Anand
  • 2.3.1.6. Gradient plasticity damage model: Voyiadjis and his co-workers2.3.2. Integral-type nonlocal plasticity models; 2.3.2.1. Integral-type nonlocal softening models; 2.3.2.2. Integral-type nonlocal Gurson model; 2.3.2.3. Integral-type nonlocal plastic model: Bazant and Lin; 2.4. Finite strain plasticity: Local models; 2.4.1. Kinematics; 2.4.1.1. Material and spatial description; 2.4.1.2. Deformation gradient; 2.4.1.3. Polar decomposition; 2.4.1.4. Strain measures; 2.4.1.5. Velocity; 2.4.1.6. Material time derivative; 2.4.1.7. Velocity gradient; 2.4.1.8. Rate of deformation