Cargando…

Advanced functional polymers for biomedical applications /

Advanced Functional Polymers for Biomedical Applications presents novel techniques for the preparation and characterization of functionalized polymers, enabling researchers, scientists and engineers to understand and utilize their enhanced functionality in a range of cutting-edge biomedical applicat...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Mozafari, Masoud (Editor ), Chauhan, Naren Pal Singh (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2019.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Advanced Functional Polymers for Biomedical Applications
  • Copyright Page
  • Contents
  • List of contributors
  • Foreword
  • Preface
  • 1 Functional polymers: an introduction in the context of biomedical engineering
  • 1.1 Introduction
  • 1.2 Tissue engineering
  • 1.3 Drug delivery
  • 1.4 Gene delivery
  • 1.5 Conclusion
  • References
  • 2 Grafted biopolymers I: methodology and factors affecting grafting
  • 2.1 Introduction
  • 2.2 Different types of biopolymer
  • 2.2.1 Cellulose
  • 2.2.2 Starch
  • 2.2.3 Pectin
  • 2.2.4 Chitosan
  • 2.2.5 Carrageenan
  • 2.2.6 Dextrin
  • 2.2.7 Alginate
  • 2.3 Methods of grafting
  • 2.3.1 Grafting initiated by chemical method
  • 2.3.1.1 Free-radical grafting
  • 2.3.1.2 Ionic grafting
  • 2.3.1.3 Grafting done with living polymerization
  • 2.3.2 Grafting initiated through the radiation method
  • 2.3.2.1 Free-radical grafting
  • 2.3.2.2 Ionic grafting
  • 2.3.2.3 Difference between chemical and radiation method of grafting
  • 2.3.3 Photochemical grafting method
  • 2.3.4 Enzymatic grafting method
  • 2.3.5 Plasma radiation-induced grafting
  • 2.4 Factors affecting grafting
  • 2.4.1 Nature of backbone
  • 2.4.2 Effect of monomer
  • 2.4.3 Effects of solvent
  • 2.4.4 Effect of initiator
  • 2.4.5 Effect of the additives on grafting
  • 2.4.6 Effects of temperature
  • 2.5 Applications of grafted biopolymer
  • 2.5.1 Membrane separation science
  • 2.5.2 Conducting polymers
  • 2.5.3 Hydrogel
  • 2.5.4 Thermoplastic elastomers
  • 2.5.5 Bio-medical field
  • 2.5.6 Textile field
  • 2.6 Conclusion
  • References
  • 3 Grafted biopolymers II: synthesis and characterization
  • 3.1 Introduction
  • 3.2 Synthesis and characterization strategies
  • 3.2.1 Grafting of acrylonitrile on guar gum
  • 3.2.2 Grafting of acrylonitrile on cellulosic material, that is, Dendrocalamus strictus.
  • 3.2.3 UV grafting for removal of dyes using chitosan
  • 3.2.4 Grafting of cellulose surface with glycidyl methacrylate and ethylenediamine
  • 3.2.5 Use of cellulosic okra polymers for the removal of heavy metal ions
  • 3.2.6 Use of polypropylene membrane for the removal of metal ion
  • 3.2.7 Grafting of biopolymers onto polypropylene surface
  • 3.2.8 Use of graphene oxide nanosheet
  • 3.2.9 Synthesis of graphene oxide via mussel inspired coatings/anchors
  • 3.3 Applications of grafted functionalized polymers
  • 3.3.1 Edible product industry to biomedical applications
  • 3.3.2 Applications of functionalized CNTs
  • 3.3.3 Grafted polysaccharides in drug delivery
  • 3.3.4 Applications of elastin-like polypeptides
  • 3.3.5 Biomedical applications of silk-based biomaterials
  • 3.3.6 Resilin
  • 3.3.7 Use of titin
  • 3.3.8 Use of membrane for separation purpose
  • 3.4 Conclusion
  • References
  • 4 Conjugated polymers having semiconducting properties
  • 4.1 Introduction
  • 4.2 Classification of conducting polymer
  • 4.2.1 Ionic conducting polymer
  • 4.2.2 Filled polymer
  • 4.2.3 Inherently conducting polymer
  • 4.2.4 Conducting conjugated polymer
  • 4.3 Methods of synthesis
  • 4.3.1 Chemical synthesis
  • 4.3.2 Electrochemical synthesis
  • 4.3.3 Emulsion polymerization
  • 4.3.4 Inverse emulsion polymerization
  • 4.4 Polyanilne: a felicitous conducting polymer
  • 4.5 Advantages of polyaniline
  • 4.6 Conducting polymer nanocomposites
  • 4.7 Applications
  • 4.7.1 Conducting polymers in biomolecular sensing
  • 4.8 Graphical representation
  • 4.8.1 Drug delivery
  • 4.8.2 Conducting polymer as neural probe
  • 4.8.3 Conducting polymers as artificial muscle
  • 4.9 Conclusion
  • References
  • Further reading
  • 5 Supramolecular metallopolymers
  • 5.1 Introduction
  • 5.2 Linear supramolecular metallopolymers
  • 5.3 Branched supramolecular metallopolymers.
  • 8 Phenolic and epoxy-based copolymers and terpolymers
  • 8.1 Introduction
  • 8.2 Classification based on composition of polymers
  • 8.3 Phenolic-based copolymers
  • 8.4 Epoxy-based copolymers
  • 8.5 Phenolic-based terpolymer
  • 8.6 Epoxy-based terpolymer
  • 8.7 Conclusion
  • References
  • 9 Maleimide and acrylate based functionalized polymers
  • 9.1 Introduction
  • 9.2 Synthesis, characterization, results, and discussion
  • 9.2.1 Functional maleimide-based structural polymers
  • 9.2.1.1 Synthesis of monomers
  • 9.2.1.2 Characterization
  • 9.2.1.3 Characterization
  • 9.2.1.4 Synthesis of polymaleimides
  • 9.2.1.5 Characterization
  • 9.2.2 Synthesis of polymers using dithiomaleimide and dibromomaleimide
  • 9.2.2.1 Synthesis of monomers
  • 9.2.2.2 Polymerization of fluorescent dithiomaleimide monomers
  • 9.2.3 Use of dibromomaleimide as a functional chain transfer agent
  • 9.2.3.1 Synthesis
  • 9.2.3.2 Characterization
  • 9.2.4 Synthesis of terpolymer
  • 9.2.4.1 Results and discussion
  • 9.2.5 UV curing of bismaleimide polymer
  • 9.2.5.1 Preparation of liquid formulation
  • 9.2.5.2 UV irradiation
  • 9.2.5.3 Characterization
  • 9.2.6 Synthesis of n-4-methyl phenyl maleimide
  • 9.2.6.1 Synthesis of N-(methyl-phenyl) maleimic acid
  • 9.2.6.2 Characterization
  • 9.2.6.3 Synthesis of N-(4-methyl-phenyl) maleimide
  • 9.2.6.4 Characterization
  • 9.2.6.5 Polymerization
  • 9.2.6.6 Characterization
  • 9.2.6.7 Characterization
  • 9.2.7 Synthesis of maleimide-containing acrylate monomer
  • 9.2.7.1 Synthesis of furan-protected maleimide-containing acrylate monomer
  • 9.2.7.2 Characterization
  • 9.2.7.3 Synthesis of catechol chain-end functionalized maleimide
  • 9.2.7.4 Characterization
  • 9.3 Applications of maleimide and acrylate based functionalized polymers
  • 9.3.1 Targeted drug delivery
  • 9.3.2 Applications of thermally responsive systems.
  • 9.3.3 Microparticles and nanoparticles
  • 9.3.4 Hydrogels
  • 9.3.5 Gene therapy and delivery
  • 9.3.6 Tissue engineering
  • 9.3.7 Bone repair and regeneration
  • 9.3.8 Wound dressing and artificial skin
  • 9.3.9 Applications of polymer synthesis
  • 9.3.10 Applications of imaging
  • 9.3.11 Applications of cancer treatment
  • 9.3.12 Nonviral gene delivery
  • 9.4 Conclusion
  • References
  • 10 Functional protein to polymer surfaces: an attachment
  • 10.1 Introduction
  • 10.2 Force and interaction influencing protein attachment
  • 10.2.1 Hydrophobic interactions
  • 10.2.2 Electrostatic bonding
  • 10.2.3 Hydrogen bonding
  • 10.2.4 Van der Waals interaction
  • 10.2.5 Other factors influencing protein attachment
  • 10.2.5.1 Temperature
  • 10.2.5.2 Ionic strength
  • 10.2.5.3 Multiprotein system
  • 10.3 Protein adsorption to polymers
  • 10.3.1 Conformation effects
  • 10.3.2 Adsorption to the polymer scaffolds
  • 10.3.2.1 Chitosan
  • 10.4 Functionalization of protein by different methods
  • 10.5 Amino acids responsible for protein-polymer attachment
  • 10.5.1 Lysine and the N-terminus of the proteins
  • 10.5.2 Cysteine
  • 10.5.3 Tyrosine
  • 10.5.4 Glutamine
  • 10.5.5 Tryptophan
  • 10.5.6 Histidine
  • 10.5.7 Aspartic acid, glutamic acid and C-terminus
  • 10.5.8 Arginine
  • 10.5.9 Phenylalanine
  • 10.5.10 Nonnatural amino acids
  • 10.6 Applications of protein-polymer attachment
  • 10.6.1 In the field of medicine
  • 10.6.2 In the field of protein isolation and separation
  • 10.6.3 In the formation of classic amphiphiles or surfactants
  • 10.7 Conclusion
  • References
  • 11 Functionalized photo-responsive polymeric system
  • 11.1 Introduction
  • 11.2 Photo-induced reactions
  • 11.2.1 Photo-isomerization reactions
  • 11.2.2 Photo-dimerization
  • 11.2.3 Photocleavage
  • 11.3 Functionalization of polymer
  • 11.3.1 Photo-responsive moiety.