|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1104998728 |
003 |
OCoLC |
005 |
20231120010400.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
190619s2019 ne o 000 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d OPELS
|d OCLCF
|d UKMGB
|d YDX
|d UKAHL
|d S2H
|d OCLCO
|d LVT
|d LOA
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB9B3524
|2 bnb
|
016 |
7 |
|
|a 019445469
|2 Uk
|
019 |
|
|
|a 1229765391
|
020 |
|
|
|a 9780128166048
|q (electronic bk.)
|
020 |
|
|
|a 0128166045
|q (electronic bk.)
|
020 |
|
|
|a 9780128163498
|q (electronic bk.)
|
020 |
|
|
|a 0128163496
|q (electronic bk.)
|
035 |
|
|
|a (OCoLC)1104998728
|z (OCoLC)1229765391
|
050 |
|
4 |
|a QD251.3
|
072 |
|
7 |
|a SCI
|x 013040
|2 bisacsh
|
082 |
0 |
4 |
|a 547
|2 23
|
245 |
0 |
0 |
|a Advanced functional polymers for biomedical applications /
|c Masoud Mozafari, Narendra Pal Singh Chauhan.
|
264 |
|
1 |
|a Amsterdam :
|b Elsevier,
|c 2019.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed June 20, 2019)
|
520 |
|
|
|a Advanced Functional Polymers for Biomedical Applications presents novel techniques for the preparation and characterization of functionalized polymers, enabling researchers, scientists and engineers to understand and utilize their enhanced functionality in a range of cutting-edge biomedical applications.
|
505 |
0 |
|
|a Front Cover -- Advanced Functional Polymers for Biomedical Applications -- Copyright Page -- Contents -- List of contributors -- Foreword -- Preface -- 1 Functional polymers: an introduction in the context of biomedical engineering -- 1.1 Introduction -- 1.2 Tissue engineering -- 1.3 Drug delivery -- 1.4 Gene delivery -- 1.5 Conclusion -- References -- 2 Grafted biopolymers I: methodology and factors affecting grafting -- 2.1 Introduction -- 2.2 Different types of biopolymer -- 2.2.1 Cellulose -- 2.2.2 Starch -- 2.2.3 Pectin -- 2.2.4 Chitosan -- 2.2.5 Carrageenan -- 2.2.6 Dextrin -- 2.2.7 Alginate -- 2.3 Methods of grafting -- 2.3.1 Grafting initiated by chemical method -- 2.3.1.1 Free-radical grafting -- 2.3.1.2 Ionic grafting -- 2.3.1.3 Grafting done with living polymerization -- 2.3.2 Grafting initiated through the radiation method -- 2.3.2.1 Free-radical grafting -- 2.3.2.2 Ionic grafting -- 2.3.2.3 Difference between chemical and radiation method of grafting -- 2.3.3 Photochemical grafting method -- 2.3.4 Enzymatic grafting method -- 2.3.5 Plasma radiation-induced grafting -- 2.4 Factors affecting grafting -- 2.4.1 Nature of backbone -- 2.4.2 Effect of monomer -- 2.4.3 Effects of solvent -- 2.4.4 Effect of initiator -- 2.4.5 Effect of the additives on grafting -- 2.4.6 Effects of temperature -- 2.5 Applications of grafted biopolymer -- 2.5.1 Membrane separation science -- 2.5.2 Conducting polymers -- 2.5.3 Hydrogel -- 2.5.4 Thermoplastic elastomers -- 2.5.5 Bio-medical field -- 2.5.6 Textile field -- 2.6 Conclusion -- References -- 3 Grafted biopolymers II: synthesis and characterization -- 3.1 Introduction -- 3.2 Synthesis and characterization strategies -- 3.2.1 Grafting of acrylonitrile on guar gum -- 3.2.2 Grafting of acrylonitrile on cellulosic material, that is, Dendrocalamus strictus.
|
505 |
8 |
|
|a 3.2.3 UV grafting for removal of dyes using chitosan -- 3.2.4 Grafting of cellulose surface with glycidyl methacrylate and ethylenediamine -- 3.2.5 Use of cellulosic okra polymers for the removal of heavy metal ions -- 3.2.6 Use of polypropylene membrane for the removal of metal ion -- 3.2.7 Grafting of biopolymers onto polypropylene surface -- 3.2.8 Use of graphene oxide nanosheet -- 3.2.9 Synthesis of graphene oxide via mussel inspired coatings/anchors -- 3.3 Applications of grafted functionalized polymers -- 3.3.1 Edible product industry to biomedical applications -- 3.3.2 Applications of functionalized CNTs -- 3.3.3 Grafted polysaccharides in drug delivery -- 3.3.4 Applications of elastin-like polypeptides -- 3.3.5 Biomedical applications of silk-based biomaterials -- 3.3.6 Resilin -- 3.3.7 Use of titin -- 3.3.8 Use of membrane for separation purpose -- 3.4 Conclusion -- References -- 4 Conjugated polymers having semiconducting properties -- 4.1 Introduction -- 4.2 Classification of conducting polymer -- 4.2.1 Ionic conducting polymer -- 4.2.2 Filled polymer -- 4.2.3 Inherently conducting polymer -- 4.2.4 Conducting conjugated polymer -- 4.3 Methods of synthesis -- 4.3.1 Chemical synthesis -- 4.3.2 Electrochemical synthesis -- 4.3.3 Emulsion polymerization -- 4.3.4 Inverse emulsion polymerization -- 4.4 Polyanilne: a felicitous conducting polymer -- 4.5 Advantages of polyaniline -- 4.6 Conducting polymer nanocomposites -- 4.7 Applications -- 4.7.1 Conducting polymers in biomolecular sensing -- 4.8 Graphical representation -- 4.8.1 Drug delivery -- 4.8.2 Conducting polymer as neural probe -- 4.8.3 Conducting polymers as artificial muscle -- 4.9 Conclusion -- References -- Further reading -- 5 Supramolecular metallopolymers -- 5.1 Introduction -- 5.2 Linear supramolecular metallopolymers -- 5.3 Branched supramolecular metallopolymers.
|
505 |
8 |
|
|a 8 Phenolic and epoxy-based copolymers and terpolymers -- 8.1 Introduction -- 8.2 Classification based on composition of polymers -- 8.3 Phenolic-based copolymers -- 8.4 Epoxy-based copolymers -- 8.5 Phenolic-based terpolymer -- 8.6 Epoxy-based terpolymer -- 8.7 Conclusion -- References -- 9 Maleimide and acrylate based functionalized polymers -- 9.1 Introduction -- 9.2 Synthesis, characterization, results, and discussion -- 9.2.1 Functional maleimide-based structural polymers -- 9.2.1.1 Synthesis of monomers -- 9.2.1.2 Characterization -- 9.2.1.3 Characterization -- 9.2.1.4 Synthesis of polymaleimides -- 9.2.1.5 Characterization -- 9.2.2 Synthesis of polymers using dithiomaleimide and dibromomaleimide -- 9.2.2.1 Synthesis of monomers -- 9.2.2.2 Polymerization of fluorescent dithiomaleimide monomers -- 9.2.3 Use of dibromomaleimide as a functional chain transfer agent -- 9.2.3.1 Synthesis -- 9.2.3.2 Characterization -- 9.2.4 Synthesis of terpolymer -- 9.2.4.1 Results and discussion -- 9.2.5 UV curing of bismaleimide polymer -- 9.2.5.1 Preparation of liquid formulation -- 9.2.5.2 UV irradiation -- 9.2.5.3 Characterization -- 9.2.6 Synthesis of n-4-methyl phenyl maleimide -- 9.2.6.1 Synthesis of N-(methyl-phenyl) maleimic acid -- 9.2.6.2 Characterization -- 9.2.6.3 Synthesis of N-(4-methyl-phenyl) maleimide -- 9.2.6.4 Characterization -- 9.2.6.5 Polymerization -- 9.2.6.6 Characterization -- 9.2.6.7 Characterization -- 9.2.7 Synthesis of maleimide-containing acrylate monomer -- 9.2.7.1 Synthesis of furan-protected maleimide-containing acrylate monomer -- 9.2.7.2 Characterization -- 9.2.7.3 Synthesis of catechol chain-end functionalized maleimide -- 9.2.7.4 Characterization -- 9.3 Applications of maleimide and acrylate based functionalized polymers -- 9.3.1 Targeted drug delivery -- 9.3.2 Applications of thermally responsive systems.
|
505 |
8 |
|
|a 9.3.3 Microparticles and nanoparticles -- 9.3.4 Hydrogels -- 9.3.5 Gene therapy and delivery -- 9.3.6 Tissue engineering -- 9.3.7 Bone repair and regeneration -- 9.3.8 Wound dressing and artificial skin -- 9.3.9 Applications of polymer synthesis -- 9.3.10 Applications of imaging -- 9.3.11 Applications of cancer treatment -- 9.3.12 Nonviral gene delivery -- 9.4 Conclusion -- References -- 10 Functional protein to polymer surfaces: an attachment -- 10.1 Introduction -- 10.2 Force and interaction influencing protein attachment -- 10.2.1 Hydrophobic interactions -- 10.2.2 Electrostatic bonding -- 10.2.3 Hydrogen bonding -- 10.2.4 Van der Waals interaction -- 10.2.5 Other factors influencing protein attachment -- 10.2.5.1 Temperature -- 10.2.5.2 Ionic strength -- 10.2.5.3 Multiprotein system -- 10.3 Protein adsorption to polymers -- 10.3.1 Conformation effects -- 10.3.2 Adsorption to the polymer scaffolds -- 10.3.2.1 Chitosan -- 10.4 Functionalization of protein by different methods -- 10.5 Amino acids responsible for protein-polymer attachment -- 10.5.1 Lysine and the N-terminus of the proteins -- 10.5.2 Cysteine -- 10.5.3 Tyrosine -- 10.5.4 Glutamine -- 10.5.5 Tryptophan -- 10.5.6 Histidine -- 10.5.7 Aspartic acid, glutamic acid and C-terminus -- 10.5.8 Arginine -- 10.5.9 Phenylalanine -- 10.5.10 Nonnatural amino acids -- 10.6 Applications of protein-polymer attachment -- 10.6.1 In the field of medicine -- 10.6.2 In the field of protein isolation and separation -- 10.6.3 In the formation of classic amphiphiles or surfactants -- 10.7 Conclusion -- References -- 11 Functionalized photo-responsive polymeric system -- 11.1 Introduction -- 11.2 Photo-induced reactions -- 11.2.1 Photo-isomerization reactions -- 11.2.2 Photo-dimerization -- 11.2.3 Photocleavage -- 11.3 Functionalization of polymer -- 11.3.1 Photo-responsive moiety.
|
650 |
|
0 |
|a Chemistry, Organic.
|
650 |
|
0 |
|a Plastics.
|
650 |
|
2 |
|a Chemistry, Organic
|0 (DNLM)D002625
|
650 |
|
2 |
|a Plastics
|0 (DNLM)D010969
|
650 |
|
6 |
|a Chimie organique.
|0 (CaQQLa)201-0004956
|
650 |
|
6 |
|a Mati�eres plastiques.
|0 (CaQQLa)201-0010878
|
650 |
|
7 |
|a organic chemistry.
|2 aat
|0 (CStmoGRI)aat300054541
|
650 |
|
7 |
|a SCIENCE
|x Chemistry
|x Organic.
|2 bisacsh
|
650 |
|
7 |
|a Chemistry, Organic
|2 fast
|0 (OCoLC)fst00853501
|
650 |
|
7 |
|a Plastics
|2 fast
|0 (OCoLC)fst01066542
|
700 |
1 |
|
|a Mozafari, Masoud,
|e editor.
|
700 |
1 |
|
|a Chauhan, Naren Pal Singh,
|e editor.
|
776 |
0 |
8 |
|i Print version :
|z 9780128163498
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128163498
|z Texto completo
|