Taking the temperature of the Earth : steps towards integrated understanding of variability and change /
Taking the Temperature of the Earth: Steps towards Integrated Understanding of Variability and Change presents an integrated, collaborative approach to observing and understanding various surface temperatures from a whole-Earth perspective. The book describes the progress in improving the quality of...
Clasificación: | Libro Electrónico |
---|---|
Autores principales: | , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
Amsterdam :
Elsevier,
2019.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Taking The Temperature of The Earth: Steps towards Integrated Understanding of Variability and Change; Copyright; Contents; Contributors; Chapter 1: Introduction to the Remote Sensing of Earth-Surface Temperatures; Reference; Chapter 2: Global Sea Surface Temperature; 2.1. Introduction; 2.1.1. Importance of Global Sea Surface Temperature; 2.1.2. Definitions of Sea Surface Temperature; 2.1.2.1. Foundation Temperature; 2.1.2.2. Near-Surface Depth Temperatures; 2.1.2.3. The Thermal Skin of the Ocean; 2.1.3. Global and Seasonal Distributions of SST
- 2.1.4. Large-Scale SST-Atmosphere Interactions2.1.5. Sea Surface Temperature and Climate; 2.2. Retrieval and Measurement Methodology; 2.2.1. Relationship of SST to Top-of-Atmosphere Radiances; 2.2.2. Satellite Infrared Retrievals of SST; 2.2.3. Satellite Microwave Retrievals of SST; 2.3. Validation; 2.3.1. Types of In Situ Measurements of Sea Surface Temperature; 2.3.2. Factors Causing Alternative Sea Surface Temperature Measurements to Differ; 2.3.3. Practical Validation Approaches; 2.3.4. Sea Surface Temperature Validation and Uncertainty Budgets; 2.4. Satellite Data Availability
- 2.4.1. Selected Missions Past and Present2.4.1.1. AVHRRs; 2.4.1.2. (A)ATSRs; 2.4.1.3. MODIS; 2.4.1.4. VIIRS; 2.4.1.5. SEVIRI; 2.4.1.6. GOES Imager; 2.4.1.7. Advanced Himawari Imager (AHI) and the Advanced Baseline Imager (ABI); 2.4.2. International Collaboration on Data Sharing; 2.4.3. Future Developments in Satellite SST; 2.4.3.1. Higher Spatial-Resolution Infra-Red Radiometers; 2.4.3.2. More Capable Microwave Radiometers; 2.5. Science Applications; 2.5.1. Operational Forecasting; 2.5.1.1. Numerical Weather Prediction; 2.5.1.2. Ocean Forecasting; 2.5.1.3. Seasonal and Interannual Forecasting
- 2.5.2. Climate Monitoring and Research2.5.2.1. Teleconnection Studies; 2.5.2.2. Monitoring Long-Term Trends in SST; 2.5.3. Marine Biology; 2.5.3.1. Coral Reefs; 2.5.3.2. Fisheries; 2.5.4. Concluding Remarks; References; Further Reading; Chapter 3: Land Surface Temperature; 3.1. Introduction; 3.2. Thermal Infrared Theory; 3.2.1. Thermal Emission; 3.2.2. Emissivity and Kirchhoff's Law; 3.2.3. Thermal Infrared Radiative Transfer; 3.3. 1st Retrieval Algorithms; 3.3.1. Deterministic Approaches; 3.3.1.1. Single-Band Inversion; 3.3.1.2. Split-Window 1st Algorithms; 3.3.2. Nondeterministic Approaches
- 3.3.2.1. MODIS Day/Night Algorithm3.3.2.2. Kalman Filter (KF) for Geostationary Data; 3.3.2.3. Temperature Emissivity Separation (TES) Algorithm: Background; 3.3.2.3.1. Normalized Emissivity Method (NEM); 3.3.2.3.2. Alpha-Derived Emissivity (ADE); 3.3.2.3.3. Temperature-Independent Spectral Indices (TISI); 3.3.2.4. Temperature Emissivity Separation (TES) Algorithm; 3.3.2.4.1. Normalized Emissivity Module (NEM); 3.3.2.4.2. Ratio Module; 3.3.2.4.3. Minimum-Maximum Difference (MMD) Module; 3.3.2.4.4. TES Calibration Curve; 3.4. Validation; 3.4.1. Introduction