|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1102049110 |
003 |
OCoLC |
005 |
20231120010353.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
190522s2019 enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d OPELS
|d OCLCF
|d UKAHL
|d SFB
|d OCLCQ
|d OCLCO
|d S2H
|d UX1
|d VT2
|d OCLCA
|d NLW
|d OCLCO
|d OCLCQ
|d OCLCO
|d COM
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB997544
|2 bnb
|
019 |
|
|
|a 1235834808
|
020 |
|
|
|a 9780128174210
|q (electronic bk.)
|
020 |
|
|
|a 0128174218
|q (electronic bk.)
|
020 |
|
|
|a 9780128174203
|q (electronic bk.)
|
020 |
|
|
|a 012817420X
|q (electronic bk.)
|
035 |
|
|
|a (OCoLC)1102049110
|z (OCoLC)1235834808
|
050 |
|
4 |
|a RC386.6.E43
|
060 |
|
4 |
|a 2019 F-948
|
060 |
|
4 |
|a WM 171.5
|
072 |
|
7 |
|a HEA
|x 039000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 014000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 022000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 112000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 045000
|2 bisacsh
|
082 |
0 |
4 |
|a 616.8047547
|2 23
|
100 |
1 |
|
|a Malik, Aamir Saeed,
|d 1969-
|e author.
|
245 |
1 |
0 |
|a EEG-based experiment design for major depressive disorder :
|b machine learning and psychiatric diagnosis /
|c Aamir Saeed Malik, Wajid Mumtaz
|
264 |
|
1 |
|a London :
|b Academic Press,
|c 2019.
|
300 |
|
|
|a 1 online resource (xvii, 235 pages) :
|b illustrations (some color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (EBSCO, viewed May 23, 2019).
|
520 |
|
|
|a EEG-Based Experiment Design for Major Depressive Disorder: Machine Learning and Psychiatric Diagnosis introduces EEG-based machine learning solutions for diagnosis and assessment of treatment efficacy for a variety of conditions. With a unique combination of background and practical perspectives for the use of automated EEG methods for mental illness, it details for readers how to design a successful experiment, providing experiment designs for both clinical and behavioral applications. This book details the EEG-based functional connectivity correlates for several conditions, including depression, anxiety, and epilepsy, along with pathophysiology of depression, underlying neural circuits and detailed options for diagnosis. It is a necessary read for those interested in developing EEG methods for addressing challenges for mental illness and researchers exploring automated methods for diagnosis and objective treatment assessment.
|
505 |
0 |
|
|a 1. Introduction: Depression and Challenges; 2. EEG Fundamentals; 3. EEG-Based Brain Functional Connectivity and Clinical Implications; 4. Pathophysiology of Depression; 5. Using EEG for Diagnosing and Treating Depression; 6. Neural Circuits and EEG Based Neurobiology for Depression; 7. Design of EEG Experiment for Assessing MDD; 8. EEG-based Diagnosis of Depression; 9. EEG-based Treatment Efficacy Assessment Involving Depression
|
650 |
|
0 |
|a Electroencephalography
|x Methodology.
|
650 |
|
0 |
|a Depression, Mental.
|
650 |
|
0 |
|a Brain
|x Research.
|
650 |
1 |
2 |
|a Depressive Disorder, Major
|x diagnosis
|0 (DNLM)D003865Q000175
|
650 |
1 |
2 |
|a Electroencephalography
|x methods
|0 (DNLM)D004569Q000379
|
650 |
2 |
2 |
|a Machine Learning
|0 (DNLM)D000069550
|
650 |
|
6 |
|a �Electroenc�ephalographie
|0 (CaQQLa)201-0021971
|x M�ethodologie.
|0 (CaQQLa)201-0379663
|
650 |
|
6 |
|a D�epression.
|0 (CaQQLa)201-0007222
|
650 |
|
6 |
|a Cerveau
|x Recherche.
|0 (CaQQLa)201-0011406
|
650 |
|
7 |
|a HEALTH & FITNESS
|x Diseases
|x General.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Clinical Medicine.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Diseases.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Evidence-Based Medicine.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Internal Medicine.
|2 bisacsh
|
650 |
|
7 |
|a Brain
|x Research
|2 fast
|0 (OCoLC)fst00837661
|
650 |
|
7 |
|a Depression, Mental
|2 fast
|0 (OCoLC)fst00890931
|
700 |
1 |
|
|a Mumtaz, Wajid,
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Malik, Aamir Saeed.
|t EEG-based experiment design for major depressive disorder : machine learning and psychiatric diagnosis.
|d London, United Kingdom : Academic Press, an imprint of Elsevier, 2019
|h 255 pages
|z 9780128174203
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128174203
|z Texto completo
|