|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1099675091 |
003 |
OCoLC |
005 |
20231120010351.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
190502s2019 enka o 001 0 eng d |
010 |
|
|
|z 2018966172
|
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d OPELS
|d UKMGB
|d OCLCF
|d YDX
|d CNO
|d OCLCO
|d OTZ
|d OCL
|d UKAHL
|d S2H
|d TOH
|d TAC
|d OCLCQ
|d OCLCO
|d K6U
|d COA
|d FZL
|d OCLCQ
|d FTB
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB988173
|2 bnb
|
016 |
7 |
|
|a 019391665
|2 Uk
|
019 |
|
|
|a 1125096945
|a 1224589222
|a 1302702049
|a 1340068036
|a 1351597227
|a 1355684754
|a 1380768181
|
020 |
|
|
|a 9780128169179
|q electronic book
|
020 |
|
|
|a 0128169176
|q electronic book
|
020 |
|
|
|z 9780128169162
|q paperback
|
020 |
|
|
|z 0128169168
|q paperback
|
024 |
8 |
|
|a C20180016667
|
024 |
8 |
|
|a 9780128169179
|
024 |
8 |
|
|a (WaSeSS)ssj0002571099
|
035 |
|
|
|a (OCoLC)1099675091
|z (OCoLC)1125096945
|z (OCoLC)1224589222
|z (OCoLC)1302702049
|z (OCoLC)1340068036
|z (OCoLC)1351597227
|z (OCoLC)1355684754
|z (OCoLC)1380768181
|
050 |
|
4 |
|a QA76.9.D37
|b I4575 2019
|
050 |
|
4 |
|a QA76.9.D37
|b .I56 2019
|
072 |
|
7 |
|a COM
|x 062000
|2 bisacsh
|
072 |
|
7 |
|a GLC
|2 bicssc
|
072 |
|
7 |
|a UF
|2 bicssc
|
072 |
|
7 |
|a UND
|2 bicssc
|
082 |
0 |
4 |
|a 005.745
|2 23
|
100 |
1 |
|
|a Inmon, William H.,
|e author.
|
245 |
1 |
0 |
|a Data architecture :
|b a primer for the data scientist /
|c W.H. Inmon, Daniel Linstedt, Mary Levins.
|
250 |
|
|
|a Second edition.
|
264 |
|
1 |
|a London, United Kingdom ;
|a San Diego, CA :
|b Academic Press,
|c [2019]
|
300 |
|
|
|a 1 online resource (xv, 416 pages) :
|b illustrations (chiefly color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
347 |
|
|
|a text file
|
500 |
|
|
|a Includes index.
|
520 |
|
|
|a Data Architecture: A Primer for the Data Scientist: Big Data, Data Warehouse and Data Vault, Second Edition, addresses how Big Data fits within the existing information infrastructure and data warehousing systems. This is an essential topic as researchers and engineers increasingly need to deal with large and complex sets of data. Until data is gathered and placed into an existing framework or architecture, it cannot be used to its full potential. Drawing upon years of practical experience and using numerous examples and case studies from across industries, the authors explain where Big Data fits, giving data scientists the necessary context for how pieces of the puzzle should fit together.
|
542 |
|
|
|f Copyright ©: Elsevier Science & Technology
|g 2019
|
588 |
|
|
|a Description based on online resource; title from digital title page (viewed on June 20, 2023).
|
650 |
|
0 |
|a Data warehousing.
|
650 |
|
0 |
|a Big data.
|
650 |
|
0 |
|a Electronic data processing.
|
650 |
|
0 |
|a Information retrieval.
|
650 |
|
2 |
|a Information Storage and Retrieval
|0 (DNLM)D016247
|
650 |
|
6 |
|a Entrep�ots de donn�ees (Informatique)
|0 (CaQQLa)201-0300302
|
650 |
|
6 |
|a Donn�ees volumineuses.
|0 (CaQQLa)000284673
|
650 |
|
6 |
|a Recherche de l'information.
|0 (CaQQLa)201-0013918
|
650 |
|
7 |
|a information retrieval.
|2 aat
|0 (CStmoGRI)aat300155377
|
650 |
|
7 |
|a COMPUTERS
|x Data Modeling & Design.
|2 bisacsh
|
650 |
|
7 |
|a Information retrieval
|2 fast
|0 (OCoLC)fst00972619
|
650 |
|
7 |
|a Electronic data processing
|2 fast
|0 (OCoLC)fst00906956
|
650 |
|
7 |
|a Big data
|2 fast
|0 (OCoLC)fst01892965
|
650 |
|
7 |
|a Data warehousing
|2 fast
|0 (OCoLC)fst00888026
|
700 |
1 |
|
|a Linst, Daniel,
|e author.
|
700 |
1 |
|
|a Levins, Mary,
|e author.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128169162
|z Texto completo
|