Biomechatronics /
Clasificación: | Libro Electrónico |
---|---|
Autor principal: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London, United Kingdom :
Academic Press, an imprint of Elsevier,
2019.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Biomechatronics; Copyright; Contents; Contributors; Chapter 1: Introduction; References; Chapter 2: Kinematics and Dynamics; 2.1. Introduction; 2.2. Kinematics; 2.2.1. Forward Kinematics; 2.2.2. Inverse Kinematics; 2.2.3. Jacobian of Coordinate Transformation; 2.3. Dynamics; 2.3.1. Virtual Work, ``Inverse�� and ``Forward�� Dynamics, Inverse and Forward Dynamics; 2.3.2. Newton's Equations; 2.3.3. Connection Between Virtual Work and Newton Euler Approach; 2.3.4. Euler-Lagrange Method; 2.3.5. Euler-Lagrange Method Versus Newton-Euler Method
- 2.3.6. Dynamics in Noninertial Accelerating and Rotating Coordinate Frame2.3.7. Hamilton Method; 2.3.8. Lagrange Multipliers, Forces of Constraints, and Ground (or Base) Reaction Forces; 2.3.9. Locomotor Dynamics, Ground Reaction Forces, and ZMP; 2.3.10. Static Versus Dynamic Balance; 2.3.11. Zero-Moment Versus Moment Balance Strategy; 2.3.12. Example of Reliable Balance Metric for Dynamic Balance; 2.4. Propulsion in Fluids; References; Chapter 3: Actuators; 3.1. Introduction; 3.2. Synthetic Muscles; 3.2.1. Pneumatic Artificial Muscle (PAM); McKibben Muscle; 3.2.2. Hydro Muscle
- 3.2.3. Pure Fluidic Elastomer Actuators (FEAs)3.2.4. Cable-Driven ``Muscles��; 3.2.4.1. Cable-Driven Artificial Muscle Attachment: From Mechanical Engineering to Anatomy; 3.2.5. Liquid-Vapor Transition and Chemical Reaction-Based ``Muscles��; 3.3. Electroactive Polymers; 3.4. Shape-Memory Alloys and Shape-Memory Polymers; 3.5. Variable Stiffness/Impedance Actuators; 3.5.1. Elastic Element Configuration and Design; 3.6. A Brief Review of Nonbiologically (or Less Biologically) Inspired Conventional Actuators; 3.6.1. Linear Actuators; 3.6.2. Rotary Actuators; 3.7. Biological Actuators: Muscles
- 3.7.1. Actuation of Biological MusclesA. Appendix: Braided, Helically Wound Mesh for McKibben Like Artificial Muscle; References; Chapter 4: Sensors: Natural and Synthetic Sensors; 4.1. Introduction; 4.2. Natural Sensors; 4.2.1. The Nervous System; 4.3. Sensory Receptors; 4.4. Sensory Receptors Classified by Stimulus Type Detected; 4.4.1. Chemoreceptors; 4.4.2. Mechanoreceptors; 4.4.3. Thermoreceptors; 4.4.4. Nociceptors; 4.4.5. Electromagnetic Receptors; 4.5. Sensory Receptors Classified by Stimulus Location; 4.5.1. Proprioceptors; 4.5.2. Interoceptors; 4.5.3. Extroreceptors
- 4.6. Synthetic Biological Sensors4.6.1. Overview and Challenges; 4.7. Synthetic Sensors; 4.7.1. Chemical Sensors; 4.7.2. Electric Sensors; 4.7.3. Optical Sensors; 4.7.4. Mechanical Sensors; 4.7.5. Thermal Sensors; 4.8. Sensor Fusion and Integration; 4.9. Integrated Systems for Obtaining Sensory Feedback; 4.9.1. Force Plates; 4.9.2. Motion Capture Systems; 4.9.3. VO2/CO2 Sensors; 4.9.4. Electrocardiography; 4.9.5. Electromyography; 4.10. Conclusions and Future Perspective; References; Further Reading; Chapter 5: Control and Physical Intelligence