Intelligent data analysis for biomedical applications : challenges and solutions /
Intelligent Data Analysis for Biomedical Applications: Challenges and Solutions presents specialized statistical, pattern recognition, machine learning, data abstraction and visualization tools for the analysis of data and discovery of mechanisms that create data. It provides computational methods a...
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | , , |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London :
Academic Press,
2019.
|
Colección: | Intelligent data centric systems.
|
Temas: | |
Acceso en línea: | Texto completo |
Tabla de Contenidos:
- Front Cover; Intelligent Data Analysis for Biomedical Applications; Copyright Page; Contents; List of Contributors; 1 IoT-Based Intelligent Capsule Endoscopy System: A Technical Review; 1.1 Introduction; 1.2 Data Acquisition; 1.2.1 Image Sensor; 1.2.2 Optical Sensor; 1.2.3 Pressure, Temperature, and pH-Monitoring Sensor; 1.2.4 Other Ingestible Sensors; 1.3 On-Chip Data-Processing Unit; 1.3.1 Image Compression; 1.3.2 Application Specific Integrated Circuit Design; 1.3.3 Radiofrequency Transmission; 1.3.4 Power Management; 1.4 Data Management of Wireless Capsule Endoscopy Systems
- 1.5 IoT-Based Wireless Capsule Endoscopy System1.5.1 Intelligence in the System; 1.5.2 Real-Time Sensing; 1.5.3 Internet of Things Protocol; 1.5.4 Connectivity; 1.5.5 Security; 1.5.6 Improved Outcomes of Treatment; 1.6 Future Challenges; 1.7 Conclusion; References; 2 Optimization of Methods for Image-Texture Segmentation Using Ant Colony Optimization; 2.1 Introduction; 2.2 Implementation of Ant Colony Optimization Algorithm; 2.2.1 Isula Framework; 2.2.2 Ant Route Construction; 2.2.3 Ant Pheromone Update; 2.3 Image Segmentation Techniques; 2.3.1 Threshold-Based Segmentation
- 2.3.1.1 Otsu' Algorithm2.3.1.2 Ant Colony Optimization-Based Multilevel Thresholds Selection; 2.3.1.3 Algorithm for Ant Colony Optimization; 2.3.2 Edge-Based Segmentation; 2.3.2.1 Ant Colony Optimization-Based Edge Detection Initialization; 2.3.2.2 Ant Colony Optimization-Based Structuring Process; 2.3.2.3 Ant Colony Optimization-Based Updating Process; 2.3.2.4 Decision Process; 2.4 Evaluation of Segmentation Techniques; 2.4.1 Mean-Square Error; 2.4.2 Root-Mean-Square-Error; 2.4.3 Signal-to-Noise Ratio; 2.4.4 Peak Signal-to-Noise Ratio; 2.5 Experiments and Results
- 2.5.1 Ant Colony Optimization-Image-Segmentation Using the Isula Framework2.5.2 Performance Testing Ant Colony Optimization Image Segmentation Algorithm; 2.5.3 Application of Ant Colony Optimization on Segmentation of Brain MRI; 2.5.4 Ant Colony Optimization-Image Segmentation on Iris Images; 2.5.5 Comparison of Results; 2.6 Conclusion; References; Further Reading; 3 A Feature Fusion-Based Discriminant Learning Model for Diagnosis of Neuromuscular Disorders Using Single-Channel Needle E ... ; 3.1 Introduction; 3.2 State-of-Art-Methods; 3.3 Theoretical Modeling of Learning from Big Data
- 3.3.1 Strategy Statement3.3.2 Discriminant Feature Fusion Framework; 3.3.3 Generalized Multidomain Learning; 3.4 Medical Measurements and Data Analysis; 3.4.1 Electromyogram Signal Recording Setup; 3.4.2 Electromyogram Datasets; 3.5 Results and Discussion; 3.5.1 Correlation Analysis; 3.5.2 Performance Investigation of Discriminant Learning Scheme; 3.5.3 Comparative Study; 3.6 Conclusion; References; Further Reading; 4 Evolution of Consciousness Systems With Bacterial Behaviour; 4.1 Introduction; 4.2 Proposal; 4.2.1 Working Assumptions?; 4.2.2 Real Life Assumptions; 4.2.3 Consciousness Theory