Cargando…

Nanoscale ferroelectric-multiferroic materials for energy harvesting applications /

Nanoscale Ferroelectric-Multiferroic Materials for Energy Harvesting Applications presents the latest information in the emerging field of multiferroic materials research, exploring applications in energy conversion and harvesting at the nanoscale. The book covers crystal and microstructure, ferroel...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Kimura, Hideo (Editor ), Cheng, Zhenxiang (Editor ), Jia, Tingting (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam, Netherlands ; Cambridge, MA : Elsevier, [2019]
Colección:Micro & nano technologies.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Nanoscale Ferroelectric-Multiferroic Materials for Energy Harvesting Applications; Copyright; Contents; Contributors; Preface; Chapter 1: Domain switching in bismuth layer-structured multiferroic films; 1.1. Introduction; 1.2. Magnetoelectric effect in multiferroics; 1.3. Domain and domain walls; 1.4. Aurivillius phase Bi-layer structured films; 1.4.1. Structural characterization; 1.4.2. Ferroelectric properties; 1.4.3. Magnetic properties; 1.4.4. ME effect in aurivillius phase Bi-layer structured multiferroics; 1.5. Multifield-induced domain switching
  • 1.5.1. E control domain switching1.5.2. H control domain switching; 1.5.3. F control domain switching; 1.6. Summary; Acknowledgments; References; Chapter 2: Strain tuning effects in perovskites; 2.1. Introduction; 2.2. Experimental; 2.3. Results and discussion; 2.3.1. Structures; 2.3.2. Multiferroic property of SmFeO3; 2.3.3. The first principle calculation; 2.3.4. Dynamic strain tuning of the transport and magnetic property of La2/3Ca1/3MnO3 film; 2.4. Summary; Acknowledgments; References; Further Reading; Chapter 3: Aurivillius layer-structured multiferroic materials; 3.1. Introduction
  • 3.2. Sample preparation methods and experimental procedures3.3. Aurivillius layered nanomaterials; 3.3.1. Aurivillius layered BTFO15 thin film; 3.4. Aurivillius layered BTFO18 and BTFO21 thin film; 3.4.1. Structural characterization; 3.4.2. Ferroelectric properties; 3.4.3. Magnetic properties; 3.5. BTFO27 crystals; 3.5.1. Crystal structures and microstructure of BTFO crystals; 3.5.2. Ferroelectric and magnetic properties of BTFO crystals; 3.5.3. Magnetoelectric coupling of BTFO crystals; 3.6. Summary; References
  • Chapter 4: Fabrication of (K, Na)NbO3 films by pulsed laser deposition and their domain observation4.1. Introduction; 4.2. Fabrication and crystal structure of (K, Na)NbO3 ceramic targets; 4.3. Fabrication of (K, Na)NbO3 films; 4.4. Microstructure and chemical composition of (K, Na)NbO3 films; 4.5. Electric properties of (K, Na)NbO3 films; 4.6. Domain observation by laser scanning microscopy; 4.7. Domain observation of (K, Na)NbO3 films; 4.8. Conclusions; Acknowledgments; References; Chapter 5: Microscale materials design using focused proton-beam writing; 5.1. Introduction
  • 5.2. Experimental procedures5.3. Monte Carlo simulation; 5.4. Lead-free ferroelectric film fabrication and comparison of electron-beam and focused proton-beam irradiation; 5.5. Thick-film fabrication; 5.6. Microscale thick-film patterning; 5.7. Conclusions; Acknowledgments; References; Chapter 6: Thin film fabrication using nanoscale flat substrates; 6.1. Introduction; 6.2. Experimental; 6.3. Observations of atomically flat surfaces with atomic steps and terraces by atomic force microscopy; 6.4. Evaluation of PbTiO3 thin films by X-ray fluorescence spectroscopy and X-ray diffraction