|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1086612874 |
003 |
OCoLC |
005 |
20231120010340.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
190221s2019 enk ob 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d EBLCP
|d N$T
|d OCLCF
|d OCLCQ
|d S2H
|d OCLCO
|d UX1
|d VT2
|d OCLCA
|d YDX
|d OCLCA
|d OCLCQ
|d OCLCO
|d K6U
|d OCL
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB936314
|2 bnb
|
019 |
|
|
|a 1086126586
|a 1086339872
|a 1235827753
|
020 |
|
|
|a 0128174277
|
020 |
|
|
|a 9780128174272
|q (electronic bk.)
|
020 |
|
|
|a 0128174269
|q (pbk.)
|
020 |
|
|
|a 9780128174265
|
020 |
|
|
|z 9780128174265
|q (print)
|
035 |
|
|
|a (OCoLC)1086612874
|z (OCoLC)1086126586
|z (OCoLC)1086339872
|z (OCoLC)1235827753
|
050 |
|
4 |
|a RC373
|
060 |
|
4 |
|a 2019 D-095
|
060 |
|
4 |
|a WL 385
|
072 |
|
7 |
|a HEA
|x 039000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 014000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 022000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 112000
|2 bisacsh
|
072 |
|
7 |
|a MED
|x 045000
|2 bisacsh
|
082 |
0 |
4 |
|a 616.85/307547
|2 23
|
100 |
1 |
|
|a Satapathy, Sandeep Kumar,
|e author.
|
245 |
1 |
0 |
|a EEG brain signal classification for epileptic seizure disorder detection /
|c Sandeep Kumar Satapathy, Satchidananda Dehuri, Alok Kumar Jagadev, Shruti Mishra.
|
264 |
|
1 |
|a London, United Kingdom :
|b Academic Press, an imprint of Elsevier,
|c 2019.
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
0 |
|
|a Online resource; title from PDF title page (ScienceDirect, viewed February 21, 2019).
|
505 |
8 |
|
|a 1.5. Swarm Intelligence1.6. Tools for Feature Extraction; 1.7. Contributions; 1.8. Summary and Structure of Book; Chapter 2: Literature Survey; 2.1. EEG Signal Analysis Methods; 2.2. Preprocessing of EEG Signal; 2.3. Tasks of EEG Signal; 2.4. Classical vs Machine Learning Methods for EEG Classification; 2.5. Machine Learning Methods for Epilepsy Classification; 2.6. Summary; Chapter 3: Empirical Study on the Performance of the Classifiers in EEG Classification; 3.1. Multilayer Perceptron Neural Network; 3.1.1. MLPNN With Back-Propagation; 3.1.2. MLPNN With Resilient Propagation
|
505 |
8 |
|
|a 3.1.3. MLPNN With Manhattan Update Rule3.2. Radial Basis Function Neural Network; 3.3. Probabilistic Neural Network; 3.4. Recurrent Neural Network; 3.5. Support Vector Machines; 3.6. Experimental Study; 3.6.1. Datasets and Environment; 3.6.2. Parameters; 3.6.3. Results and Analysis; 3.7. Summary; Chapter 4: EEG Signal Classification Using RBF Neural Network Trained With Improved PSO Algorithm for Epilepsy Identification; 4.1. Related Work; 4.2. Radial Basis Function Neural Network; 4.2.1. RBFNN Architecture; 4.2.2. RBFNN Training Algorithm; 4.3. Particle Swarm Optimization
|
505 |
8 |
|
|a 4.3.1. Architecture4.3.2. Algorithm; 4.4. RBFNN With Improved PSO Algorithm; 4.4.1. Architecture of Proposed Model; 4.4.2. Algorithm for Proposed Model; 4.5. Experimental Study; 4.5.1. Dataset Preparation and Environment; 4.5.2. Parameters; 4.5.3. Results and Analysis; 4.6. Summary; Chapter 5: ABC Optimized RBFNN for Classification of EEG Signal for Epileptic Seizure Identification; 5.1. Related Work; 5.2. Artificial Bee Colony Algorithm; 5.2.1. Architecture; 5.2.2. Algorithm; 5.3. RBFNN With Improved ABC Algorithm; 5.3.1. Architecture of the Proposed Model
|
505 |
8 |
|
|a 5.3.2. Algorithm for the Proposed Model5.4. Experimental Study; 5.4.1. Dataset Preparation and Environment; 5.4.2. Parameters; 5.4.3. Result and Analysis; 5.4.4. Performance Comparison Between Modified PSO and Modified ABC Algorithm; 5.5. Summary; Chapter 6: Conclusion and Future Research; 6.1. Findings and Constraints; 6.2. Future Research Work; References; Index; Back Cover
|
650 |
|
0 |
|a Epilepsy
|x Diagnosis.
|
650 |
|
0 |
|a Electroencephalography.
|
650 |
|
0 |
|a Electrophysiological aspects of epilepsy.
|
650 |
|
0 |
|a Patient monitoring.
|
650 |
1 |
2 |
|a Epilepsy
|x diagnosis
|0 (DNLM)D004827Q000175
|
650 |
1 |
2 |
|a Seizures
|x diagnosis
|0 (DNLM)D012640Q000175
|
650 |
2 |
2 |
|a Electroencephalography
|0 (DNLM)D004569
|
650 |
2 |
2 |
|a Signal Processing, Computer-Assisted
|0 (DNLM)D012815
|
650 |
2 |
2 |
|a Monitoring, Physiologic
|0 (DNLM)D008991
|
650 |
|
6 |
|a �Electroenc�ephalographie.
|0 (CaQQLa)201-0021971
|
650 |
|
6 |
|a Monitorage (Soins hospitaliers)
|0 (CaQQLa)201-0066992
|
650 |
|
7 |
|a HEALTH & FITNESS
|x Diseases
|x General.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Clinical Medicine.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Diseases.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Evidence-Based Medicine.
|2 bisacsh
|
650 |
|
7 |
|a MEDICAL
|x Internal Medicine.
|2 bisacsh
|
650 |
|
7 |
|a Patient monitoring
|2 fast
|0 (OCoLC)fst01055018
|
650 |
|
7 |
|a Electroencephalography
|2 fast
|0 (OCoLC)fst00906445
|
650 |
|
7 |
|a Electrophysiological aspects of epilepsy
|2 fast
|0 (OCoLC)fst01921037
|
650 |
|
7 |
|a Epilepsy
|x Diagnosis
|2 fast
|0 (OCoLC)fst00914189
|
700 |
1 |
|
|a Dehuri, Satchidananda,
|e author.
|
700 |
1 |
|
|a Jagadev, Alok Kumar,
|e author.
|
700 |
1 |
|
|a Mishra, Shruti,
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Satapathy, Sandeep Kumar.
|t EEG Brain Signal Classification for Epileptic Seizure Disorder Detection.
|d San Diego : Elsevier Science & Technology, �2019
|z 9780128174265
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128174265
|z Texto completo
|