|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1078152608 |
003 |
OCoLC |
005 |
20231120010334.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
181206s2018 enka ob 001 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d EBLCP
|d YDX
|d N$T
|d YDXIT
|d UKMGB
|d OCLCF
|d UKAHL
|d OCLCQ
|d LVT
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d SFB
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB8O1928
|2 bnb
|
016 |
7 |
|
|a 019165069
|2 Uk
|
019 |
|
|
|a 1078421372
|a 1229525104
|
020 |
|
|
|a 9780128113998
|q (electronic book)
|
020 |
|
|
|a 0128113995
|q (electronic book)
|
020 |
|
|
|z 9780128113707
|q (print)
|
020 |
|
|
|z 0128113707
|
035 |
|
|
|a (OCoLC)1078152608
|z (OCoLC)1078421372
|z (OCoLC)1229525104
|
050 |
|
4 |
|a TK2980
|b .C43 2018
|
072 |
|
7 |
|a TEC
|x 009070
|2 bisacsh
|
082 |
0 |
4 |
|a 621.31/26
|2 23
|
245 |
0 |
0 |
|a Charge and energy storage in electrical double layers /
|c edited by Silvia Ahualli, �Angel V. Delgado.
|
264 |
|
1 |
|a London, United Kingdom ;
|a Cambridge, MA, United States :
|b Academic Press is an imprint of Elsevier,
|c [2018]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Interface science and technology ;
|v volume 24
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Front Cover; Charge and Energy Storage in Electrical Double Layers; Copyright; Contents; Contributors; Section A: Fundamentals of the Electrical Double Layer; Chapter 1: Charge and Potential Distribution in the Electrical Double Layer of Porous Materials: Models; 1.1. Introduction; 1.2. The Classical Gouy-Chapman Theory; 1.3. The Gouy-Chapman-Stern-Grahame Model; 1.4. The Case of Cylindrical Pores; 1.5. The Modified Donnan Model; 1.6. Simulations; 1.7. Conclusions; References; Chapter 2: Kinetics of Ion Transport in a Porous Electrode; 2.1. Introduction; 2.2. Basic Physics of the Problem
|
505 |
8 |
|
|a 2.3. Equations and Boundary Conditions 2.4. Numerical Solution: Concentration and Potential Profiles With Time; 2.5. Implications for Energy Production; 2.6. Capacitive Deionization Cycles; 2.7. Membrane Capacitive Deionization Cycles; 2.8. Conclusions; Acknowledgments; References; Chapter 3: The Electrical Double Layer as a Capacitor. Evaluation of Capacitance in Different Solutions: Effect of Ion Con ... ; 3.1. Introduction; 3.2. Theory; 3.2.1. The surface charge and potential; 3.2.2. The mD approach; 3.2.3. The excess chemical potential; 3.3. EDL Structure: Bikerman Equation vs C-S Model
|
505 |
8 |
|
|a 3.4. Ion Specificity 3.4.1. Effect of valency; 3.4.2. Effect of the ionic size; 3.5. EDL Overlap; 3.6. Multiionic Solutions; 3.6.1. Competition between ions with different valency; 3.6.2. Competition between ions with equal valency; 3.6.3. Size effects: beyond steric repulsion; 3.7. Steric Effect in CDLE; Acknowledgments; References; Section B: Materials; Chapter 4: Selection of Carbon Electrode Materials; 4.1. Introduction; 4.2. Carbons; 4.2.1. Carbon aerogels; 4.2.2. CNTs; 4.2.3. Mesoporous carbon; 4.2.4. Graphene; 4.3. Nitrogen-Doped Carbons; 4.3.1. Nitrogen-doped CAs
|
505 |
8 |
|
|a 4.3.2. Nitrogen-doped graphene 4.3.3. Nitrogen-doped porous carbon spheres; References; Section C: Capacitive Energy Extraction From Double Layer Expansion (CDLE); Chapter 5: Capacitive Energy Extraction From Double Layer Expansion (CDLE). Fundamentals of the Method; 5.1. Salinity Gradient Power; 5.2. What Happens to the EDL When We Decrease the Concentration of the Solution?; 5.3. CapMix Cycle; 5.4. Theory of Salt Adsorption; 5.5. Thermodynamics of the CapMix Process; 5.6. Voltage Rise of the Electrodes; 5.6.1. Voltage rise versus base voltage graph; 5.6.2. Simple activated carbon
|
505 |
8 |
|
|a 5.6.3. Activated carbon with surface modifications 5.7. Kinetic Aspects of CDLE; 5.8. Comparison with Other SGP Techniques; References; Further Reading; Chapter 6: Capacitive Energy Extraction From CDLE: Implementation; 6.1. Introduction; 6.2. The Capmix Cell; 6.3. Suggestions for Methodology; 6.4. Optimum Working Conditions; 6.5. Temperature Influence on CDLE; 6.6. Carbon Materials Requirements; 6.7. Salinity Difference Effects; 6.8. Stackings of Capmix Cells; 6.9. Conclusions; References; Section D: Capacitive Energy Extraction by Donnan Potential (CDP)
|
588 |
0 |
|
|a Online resource; title from digital title page (viewed on January 10, 2019).
|
650 |
|
0 |
|a Energy storage.
|
650 |
|
0 |
|a Porous materials
|x Electric properties.
|
650 |
|
6 |
|a �Energie
|x Stockage.
|0 (CaQQLa)201-0032707
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Mechanical.
|2 bisacsh
|
650 |
|
7 |
|a Energy storage
|2 fast
|0 (OCoLC)fst00910245
|
700 |
1 |
|
|a Ahualli, Silvia,
|e editor.
|
700 |
1 |
|
|a Delgado, �Angel V.,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|z 0128113707
|z 9780128113707
|w (OCoLC)994525385
|
830 |
|
0 |
|a Interface science and technology ;
|v v. 24.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/bookseries/15734285/24
|z Texto completo
|