|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1076485471 |
003 |
OCoLC |
005 |
20231120010330.0 |
006 |
m o d |
007 |
cr mnu|||unuuu |
008 |
181128t20192019enka ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d YDX
|d UKMGB
|d OCLCF
|d CNCGM
|d AU@
|d OPELS
|d NHM
|d S2H
|d OCLCO
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB8N4382
|2 bnb
|
016 |
7 |
|
|a 019154668
|2 Uk
|
019 |
|
|
|a 1076793874
|
020 |
|
|
|a 9780128167991
|q (electronic bk.)
|
020 |
|
|
|a 0128167998
|q (electronic bk.)
|
020 |
|
|
|z 9780128167984
|q (print)
|
020 |
|
|
|z 012816798X
|q (print)
|
035 |
|
|
|a (OCoLC)1076485471
|z (OCoLC)1076793874
|
050 |
|
4 |
|a QA374
|
050 |
|
4 |
|a QA374
|b .L86 2019e
|
072 |
|
7 |
|a MAT
|x 007020
|2 bisacsh
|
082 |
0 |
4 |
|a 515.353
|2 23
|
100 |
1 |
|
|a Luo, Zhendong,
|e author
|u School of Mathematics and Physics, North China Electric Power University
|
245 |
1 |
0 |
|a Proper orthogonal decomposition methods for partial differential equations /
|c Zhendong Luo, Goong Chen.
|
264 |
|
1 |
|a London, United Kingdom :
|b Academic Press, an imprint of Elsevier,
|c [2019]
|
264 |
|
4 |
|c �2019
|
300 |
|
|
|a 1 online resource (xvi, 261 pages) :
|b illustrations (some color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Mathematics in Science and Engineering
|
504 |
|
|
|a Includes bibliographical references (pages 247-256) and index.
|
588 |
0 |
|
|a Online resource; title from digital title page (ScienceDirect, viewed July 23, 2020).
|
520 |
|
|
|a "Proper Orthogonal Decomposition Methods for Partial Differential Equations evaluates the potential applications of POD reduced-order numerical methods in increasing computational efficiency, decreasing calculating load and alleviating the accumulation of truncation error in the computational process. Introduces the foundations of finite-differences, finite-elements and finite-volume-elements. Models of time-dependent PDEs are presented, with detailed numerical procedures, implementation and error analysis. Output numerical data are plotted in graphics and compared using standard traditional methods. These models contain parabolic, hyperbolic and nonlinear systems of PDEs, suitable for the user to learn and adapt methods to their own R & D problems."--Provided by publisher
|
650 |
|
0 |
|a Differential equations, Partial.
|
650 |
|
0 |
|a Orthogonal decompositions.
|
650 |
|
6 |
|a �Equations aux d�eriv�ees partielles.
|0 (CaQQLa)201-0012495
|
650 |
|
6 |
|a D�ecompositions orthogonales.
|0 (CaQQLa)201-0263609
|
650 |
|
7 |
|a MATHEMATICS
|x Differential Equations
|x Partial.
|2 bisacsh
|
650 |
|
7 |
|a Differential equations, Partial
|2 fast
|0 (OCoLC)fst00893484
|
650 |
|
7 |
|a Orthogonal decompositions
|2 fast
|0 (OCoLC)fst01048520
|
700 |
1 |
|
|a Chen, Goong,
|d 1950-
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Luo, Zhendong.
|t Proper orthogonal decomposition methods for partial differential equations.
|d London, United Kingdom, Academic Press, an imprint of Elsevier, 2019
|z 9780128167984
|w (OCoLC)1046605827
|
830 |
|
0 |
|a Mathematics in science and engineering.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128167984
|z Texto completo
|