Cargando…

Fractal and trans-scale nature of entropy : towards a geometrization of thermodynamics /

Fractal and Trans-scale Nature of Entropy: Towards a Geometrization of Thermodynamics develops a new vision for entropy in thermodynamics by proposing a new method to geometrize. It investigates how this approach can accommodate a large number of very different physical systems, going from combustio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Conde, Diogo Queiros (Autor), Feidt, Michel (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2018.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover; Fractal and Trans-scale Nature of Entropy: Towards a Geometrization of Thermodynamics; Copyright; Contents; Introduction; Chapter 1. The Thermal Worm Model to Represent Entropy-Exergy Duality; 1.1. A fractal and diffusive approach to entropy and exergy; 1.2. A granular model of energy: toward the entropy and the exergy of a curve; 1.3. The thermal worm model of entropy-exergy duality; 1.4. The 2D worm model; 1.5. The 3D thermal worm-like model; Chapter 2. Black Hole Entropy and the Thermal Worm Model; 2.1. Entropy of a black hole: the Bekenstein-Hawking temperature
  • 2.2. The thermal worm model of black holes2.3. Carnot representation of black holes; Chapter 3. The Entropic Skins of Black-Body Radiation: a Geometrical Theory of Radiation; 3.1. Intermittency of black-body radiation; 3.2. Generalized RJ law based on a scale-dependent fractal geometry; 3.3. Fluctuations and energy dispersion in black-body radiation; 3.4. A scale-entropy diffusion equation for black-body radiation; 3.5. Spectral fractal dimensions and scale-entropy of black-body radiation; 3.6. Conclusion; Chapter 4. Non-extensive Thermodynamics, Fractal Geometry and Scale-entropy
  • 4.1. Tsallis entropy in non-extensive thermostatistics4.2. Two physical systems leading to Tsallis entropy: a simple interpretation of the entropic index; 4.3. Non-extensive thermostatistics, scale-dependent fractality and Kaniadakis entropy; Chapter 5. Finite Physical Dimensions Thermodynamics; 5.1. A brief history of finite physical dimensions thermodynamics; 5.2. Transfer phenomena by FPDT; 5.3. Energy conversion by FPDT; 5.4. Extension to complex systems: cascades of endoreversible Carnot engines; 5.5. Time dynamics of Carnot engines; 5.6. Conclusions on FPDT
  • Chapter 6. A Scale-Dependent Fractal and Intermittent Structure to Describe Chemical Potential and Matter Diffusion6.1. Defining and quantifying the diffusion of matter through chemical potential; 6.2. Topic scales and scale-entropy of a set of particles; 6.3. Entropy and chemical potential of an ideal gas by Sackur-Tetrode theory; 6.4. Entropy of a set of particles described through topic scales and scale-entropy; 6.5. Fractal and scale-dependent fractal geometries to interpret and calculate the chemical potential
  • 6.6. The intermittency parameter and clustering entropy of particles in the fractal case6.7. The clustering entropy and chemical potential in the parabolic fractal case; 6.8. Summing up formulas and conclusion; Conclusion; Untitled; References; Index; Back Cover