|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1066247873 |
003 |
OCoLC |
005 |
20231120010327.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
181119s2018 ne a ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d EBLCP
|d OPELS
|d OCLCF
|d UKMGB
|d YDX
|d COO
|d STF
|d MERER
|d OCLCQ
|d UPM
|d OCLCQ
|d UKAHL
|d OCLCQ
|d S2H
|d OCLCO
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d SFB
|d OCLCQ
|d OCLCO
|
015 |
|
|
|a GBB8I9935
|2 bnb
|
016 |
7 |
|
|a 019086973
|2 Uk
|
019 |
|
|
|a 1075604625
|
020 |
|
|
|a 9780081017906
|q (electronic bk.)
|
020 |
|
|
|a 0081017901
|q (electronic bk.)
|
020 |
|
|
|z 9781785481932
|
020 |
|
|
|z 1785481932
|
035 |
|
|
|a (OCoLC)1066247873
|z (OCoLC)1075604625
|
050 |
|
4 |
|a TJ265
|
072 |
|
7 |
|a SCI
|x 065000
|2 bisacsh
|
082 |
0 |
4 |
|a 536.7
|2 23
|
100 |
1 |
|
|a Conde, Diogo Queiros,
|e author.
|
245 |
1 |
0 |
|a Fractal and trans-scale nature of entropy :
|b towards a geometrization of thermodynamics /
|c Diogo Queiros Conde, Michel Feidt.
|
264 |
|
1 |
|a Amsterdam :
|b Elsevier,
|c 2018.
|
300 |
|
|
|a 1 online resource (1 volume) :
|b illustrations (some color)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
588 |
0 |
|
|a Online resource; title from PDF file page (EBSCO, viewed November 21, 2018).
|
504 |
|
|
|a Includes bibliographical references and index.
|
505 |
0 |
|
|a Front Cover; Fractal and Trans-scale Nature of Entropy: Towards a Geometrization of Thermodynamics; Copyright; Contents; Introduction; Chapter 1. The Thermal Worm Model to Represent Entropy-Exergy Duality; 1.1. A fractal and diffusive approach to entropy and exergy; 1.2. A granular model of energy: toward the entropy and the exergy of a curve; 1.3. The thermal worm model of entropy-exergy duality; 1.4. The 2D worm model; 1.5. The 3D thermal worm-like model; Chapter 2. Black Hole Entropy and the Thermal Worm Model; 2.1. Entropy of a black hole: the Bekenstein-Hawking temperature
|
505 |
8 |
|
|a 2.2. The thermal worm model of black holes2.3. Carnot representation of black holes; Chapter 3. The Entropic Skins of Black-Body Radiation: a Geometrical Theory of Radiation; 3.1. Intermittency of black-body radiation; 3.2. Generalized RJ law based on a scale-dependent fractal geometry; 3.3. Fluctuations and energy dispersion in black-body radiation; 3.4. A scale-entropy diffusion equation for black-body radiation; 3.5. Spectral fractal dimensions and scale-entropy of black-body radiation; 3.6. Conclusion; Chapter 4. Non-extensive Thermodynamics, Fractal Geometry and Scale-entropy
|
505 |
8 |
|
|a 4.1. Tsallis entropy in non-extensive thermostatistics4.2. Two physical systems leading to Tsallis entropy: a simple interpretation of the entropic index; 4.3. Non-extensive thermostatistics, scale-dependent fractality and Kaniadakis entropy; Chapter 5. Finite Physical Dimensions Thermodynamics; 5.1. A brief history of finite physical dimensions thermodynamics; 5.2. Transfer phenomena by FPDT; 5.3. Energy conversion by FPDT; 5.4. Extension to complex systems: cascades of endoreversible Carnot engines; 5.5. Time dynamics of Carnot engines; 5.6. Conclusions on FPDT
|
505 |
8 |
|
|a Chapter 6. A Scale-Dependent Fractal and Intermittent Structure to Describe Chemical Potential and Matter Diffusion6.1. Defining and quantifying the diffusion of matter through chemical potential; 6.2. Topic scales and scale-entropy of a set of particles; 6.3. Entropy and chemical potential of an ideal gas by Sackur-Tetrode theory; 6.4. Entropy of a set of particles described through topic scales and scale-entropy; 6.5. Fractal and scale-dependent fractal geometries to interpret and calculate the chemical potential
|
505 |
8 |
|
|a 6.6. The intermittency parameter and clustering entropy of particles in the fractal case6.7. The clustering entropy and chemical potential in the parabolic fractal case; 6.8. Summing up formulas and conclusion; Conclusion; Untitled; References; Index; Back Cover
|
520 |
|
|
|a Fractal and Trans-scale Nature of Entropy: Towards a Geometrization of Thermodynamics develops a new vision for entropy in thermodynamics by proposing a new method to geometrize. It investigates how this approach can accommodate a large number of very different physical systems, going from combustion and turbulence towards cosmology. As an example, a simple interpretation of the Hawking entropy in black-hole physics is provided. In the life sciences, entropy appears as the driving element for the organization of systems. This book demonstrates this fact using simple pedagogical tools, thus showing that entropy cannot be interpreted as a basic measure of disorder.
|
650 |
|
0 |
|a Thermodynamics.
|
650 |
|
0 |
|a Quantum entropy.
|
650 |
|
0 |
|a Geometric analysis.
|
650 |
|
2 |
|a Thermodynamics
|0 (DNLM)D013816
|
650 |
|
6 |
|a Thermodynamique.
|0 (CaQQLa)201-0002669
|
650 |
|
6 |
|a Entropie des syst�emes quantiques.
|0 (CaQQLa)201-0263671
|
650 |
|
6 |
|a Analyse g�eom�etrique.
|0 (CaQQLa)000271268
|
650 |
|
7 |
|a thermodynamics.
|2 aat
|0 (CStmoGRI)aat300068875
|
650 |
|
7 |
|a SCIENCE
|x Mechanics
|x Thermodynamics.
|2 bisacsh
|
650 |
|
7 |
|a Geometric analysis
|2 fast
|0 (OCoLC)fst01747051
|
650 |
|
7 |
|a Quantum entropy
|2 fast
|0 (OCoLC)fst01085104
|
650 |
|
7 |
|a Thermodynamics
|2 fast
|0 (OCoLC)fst01149832
|
700 |
1 |
|
|a Feidt, Michel,
|e author.
|
776 |
0 |
8 |
|i Print version:
|a Conde, Diogo Queiros.
|t Fractal and trans-scale nature of entropy.
|d Amsterdam : Elsevier, 2018
|z 9781785481932
|w (OCoLC)1064675375
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9781785481932
|z Texto completo
|