Cargando…

Fractal and trans-scale nature of entropy : towards a geometrization of thermodynamics /

Fractal and Trans-scale Nature of Entropy: Towards a Geometrization of Thermodynamics develops a new vision for entropy in thermodynamics by proposing a new method to geometrize. It investigates how this approach can accommodate a large number of very different physical systems, going from combustio...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autores principales: Conde, Diogo Queiros (Autor), Feidt, Michel (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Amsterdam : Elsevier, 2018.
Temas:
Acceso en línea:Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1066247873
003 OCoLC
005 20231120010327.0
006 m o d
007 cr cnu---unuuu
008 181119s2018 ne a ob 001 0 eng d
040 |a N$T  |b eng  |e rda  |e pn  |c N$T  |d N$T  |d EBLCP  |d OPELS  |d OCLCF  |d UKMGB  |d YDX  |d COO  |d STF  |d MERER  |d OCLCQ  |d UPM  |d OCLCQ  |d UKAHL  |d OCLCQ  |d S2H  |d OCLCO  |d OCLCQ  |d OCLCO  |d K6U  |d OCLCQ  |d SFB  |d OCLCQ  |d OCLCO 
015 |a GBB8I9935  |2 bnb 
016 7 |a 019086973  |2 Uk 
019 |a 1075604625 
020 |a 9780081017906  |q (electronic bk.) 
020 |a 0081017901  |q (electronic bk.) 
020 |z 9781785481932 
020 |z 1785481932 
035 |a (OCoLC)1066247873  |z (OCoLC)1075604625 
050 4 |a TJ265 
072 7 |a SCI  |x 065000  |2 bisacsh 
082 0 4 |a 536.7  |2 23 
100 1 |a Conde, Diogo Queiros,  |e author. 
245 1 0 |a Fractal and trans-scale nature of entropy :  |b towards a geometrization of thermodynamics /  |c Diogo Queiros Conde, Michel Feidt. 
264 1 |a Amsterdam :  |b Elsevier,  |c 2018. 
300 |a 1 online resource (1 volume) :  |b illustrations (some color) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
588 0 |a Online resource; title from PDF file page (EBSCO, viewed November 21, 2018). 
504 |a Includes bibliographical references and index. 
505 0 |a Front Cover; Fractal and Trans-scale Nature of Entropy: Towards a Geometrization of Thermodynamics; Copyright; Contents; Introduction; Chapter 1. The Thermal Worm Model to Represent Entropy-Exergy Duality; 1.1. A fractal and diffusive approach to entropy and exergy; 1.2. A granular model of energy: toward the entropy and the exergy of a curve; 1.3. The thermal worm model of entropy-exergy duality; 1.4. The 2D worm model; 1.5. The 3D thermal worm-like model; Chapter 2. Black Hole Entropy and the Thermal Worm Model; 2.1. Entropy of a black hole: the Bekenstein-Hawking temperature 
505 8 |a 2.2. The thermal worm model of black holes2.3. Carnot representation of black holes; Chapter 3. The Entropic Skins of Black-Body Radiation: a Geometrical Theory of Radiation; 3.1. Intermittency of black-body radiation; 3.2. Generalized RJ law based on a scale-dependent fractal geometry; 3.3. Fluctuations and energy dispersion in black-body radiation; 3.4. A scale-entropy diffusion equation for black-body radiation; 3.5. Spectral fractal dimensions and scale-entropy of black-body radiation; 3.6. Conclusion; Chapter 4. Non-extensive Thermodynamics, Fractal Geometry and Scale-entropy 
505 8 |a 4.1. Tsallis entropy in non-extensive thermostatistics4.2. Two physical systems leading to Tsallis entropy: a simple interpretation of the entropic index; 4.3. Non-extensive thermostatistics, scale-dependent fractality and Kaniadakis entropy; Chapter 5. Finite Physical Dimensions Thermodynamics; 5.1. A brief history of finite physical dimensions thermodynamics; 5.2. Transfer phenomena by FPDT; 5.3. Energy conversion by FPDT; 5.4. Extension to complex systems: cascades of endoreversible Carnot engines; 5.5. Time dynamics of Carnot engines; 5.6. Conclusions on FPDT 
505 8 |a Chapter 6. A Scale-Dependent Fractal and Intermittent Structure to Describe Chemical Potential and Matter Diffusion6.1. Defining and quantifying the diffusion of matter through chemical potential; 6.2. Topic scales and scale-entropy of a set of particles; 6.3. Entropy and chemical potential of an ideal gas by Sackur-Tetrode theory; 6.4. Entropy of a set of particles described through topic scales and scale-entropy; 6.5. Fractal and scale-dependent fractal geometries to interpret and calculate the chemical potential 
505 8 |a 6.6. The intermittency parameter and clustering entropy of particles in the fractal case6.7. The clustering entropy and chemical potential in the parabolic fractal case; 6.8. Summing up formulas and conclusion; Conclusion; Untitled; References; Index; Back Cover 
520 |a Fractal and Trans-scale Nature of Entropy: Towards a Geometrization of Thermodynamics develops a new vision for entropy in thermodynamics by proposing a new method to geometrize. It investigates how this approach can accommodate a large number of very different physical systems, going from combustion and turbulence towards cosmology. As an example, a simple interpretation of the Hawking entropy in black-hole physics is provided. In the life sciences, entropy appears as the driving element for the organization of systems. This book demonstrates this fact using simple pedagogical tools, thus showing that entropy cannot be interpreted as a basic measure of disorder. 
650 0 |a Thermodynamics. 
650 0 |a Quantum entropy. 
650 0 |a Geometric analysis. 
650 2 |a Thermodynamics  |0 (DNLM)D013816 
650 6 |a Thermodynamique.  |0 (CaQQLa)201-0002669 
650 6 |a Entropie des syst�emes quantiques.  |0 (CaQQLa)201-0263671 
650 6 |a Analyse g�eom�etrique.  |0 (CaQQLa)000271268 
650 7 |a thermodynamics.  |2 aat  |0 (CStmoGRI)aat300068875 
650 7 |a SCIENCE  |x Mechanics  |x Thermodynamics.  |2 bisacsh 
650 7 |a Geometric analysis  |2 fast  |0 (OCoLC)fst01747051 
650 7 |a Quantum entropy  |2 fast  |0 (OCoLC)fst01085104 
650 7 |a Thermodynamics  |2 fast  |0 (OCoLC)fst01149832 
700 1 |a Feidt, Michel,  |e author. 
776 0 8 |i Print version:  |a Conde, Diogo Queiros.  |t Fractal and trans-scale nature of entropy.  |d Amsterdam : Elsevier, 2018  |z 9781785481932  |w (OCoLC)1064675375 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9781785481932  |z Texto completo