|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1062395427 |
003 |
OCoLC |
005 |
20231120010325.0 |
006 |
m o d |
007 |
cr cnu|||unuuu |
008 |
181112s2019 ne ob 001 0 eng d |
040 |
|
|
|a N$T
|b eng
|e rda
|e pn
|c N$T
|d N$T
|d OPELS
|d OCLCF
|d YDX
|d MERER
|d OTZ
|d OCLCQ
|d LQU
|d S2H
|d OCLCO
|d LVT
|d SFB
|d OCLCO
|d OCLCQ
|d OCLCO
|d K6U
|d OCLCQ
|d OCLCO
|
019 |
|
|
|a 1105198006
|a 1105573527
|a 1229386405
|
020 |
|
|
|a 9780128117309
|q (electronic bk.)
|
020 |
|
|
|a 0128117303
|q (electronic bk.)
|
020 |
|
|
|a 012811729X
|
020 |
|
|
|a 9780128117293
|
020 |
|
|
|z 9780128117293
|
035 |
|
|
|a (OCoLC)1062395427
|z (OCoLC)1105198006
|z (OCoLC)1105573527
|z (OCoLC)1229386405
|
050 |
|
4 |
|a TP339
|
072 |
|
7 |
|a TEC
|x 009010
|2 bisacsh
|
082 |
0 |
4 |
|a 662/.88
|2 23
|
245 |
0 |
0 |
|a Biochar from biomass and waste :
|b fundamentals and applications /
|c edited by Yong Sik Ok, Daniel C.W. Tsang, Nanthi Bolan, J.M. Novak.
|
264 |
|
1 |
|a Amsterdam, the Netherlands :
|b Elsevier,
|c [2019]
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
504 |
|
|
|a Includes bibliographical references and index.
|
588 |
|
|
|a Online resource; title from PDF title page (EBSCO, viewed November 13, 2018).
|
505 |
0 |
|
|a Front Cover -- Biochar from Biomass and Waste -- Copyright Page -- Contents -- List of Contributors -- I. Biochar Production -- 1 Production and Formation of Biochar -- 1.1 Introduction -- 1.2 Raw Materials of Biochar -- 1.3 Processes for Biochar Production -- 1.3.1 Pyrolysis -- 1.3.2 Hydrothermal Carbonization -- 1.4 Mechanism of the Formation of Biochar -- 1.4.1 Formation of Biochar Via Pyrolysis -- 1.4.2 Formation of Biochar Via Hydrothermal Carbonization -- 1.5 Conclusions -- References -- II. Biochar Characterization -- 2 Physical Characteristics of Biochars and Their Effects on Soil Physical Properties -- 2.1 Introduction -- 2.2 Biochar Structure and Microstructure -- 2.2.1 Surface Properties of Biochars -- 2.2.2 Pore Distribution and Surface Area of Biochars -- 2.3 Soil Physical Properties of Biochar-Amended Soils -- 2.3.1 Effects of Biochars on CO2 Emission -- 2.3.2 Nutrients Retention of Biochar-Amended Soils -- 2.4 Future Research -- References -- 3 Elemental and Spectroscopic Characterization of Low-Temperature (350�C) Lignocellulosic- and Manure-Based Designer Biocha ... -- Disclaimer -- 3.1 Introduction -- 3.2 Biochar Definition -- 3.3 Biochar Feedstocks -- 3.4 Biochar Products -- 3.5 General Characteristics of Biochars -- 3.6 Low-Temperature Pyrolyzed Designer Biochars -- 3.6.1 Ultimate, Proximate, and Inorganic Composition -- 3.6.2 Spectroscopic Characteristics -- 3.6.2.1 SEM Images -- 3.6.2.2 Structural and Functional Group Properties of Biochars Revealed With 13C NMR and FTIR Spectroscopy -- 3.7 Comparison of Low versus High Temperature-Produced Biochars as a Soil Amendment -- 3.8 Conclusions -- References -- Further Reading -- 4 Modeling the Surface Chemistry of Biochars -- 4.1 Introduction -- 4.2 Surface Complexation Modeling -- 4.3 Spectroscopic and Calorimetric Approaches -- 4.4 State of Biochar Surface Chemistry Modeling.
|
505 |
8 |
|
|a 4.5 Outlook -- References -- III. Applications -- 5 Biochar for Mine-land Reclamation -- Disclaimer -- 5.1 Introduction -- 5.1.1 Cadmium -- 5.1.2 Copper -- 5.1.3 Lead -- 5.1.4 Zinc -- 5.1.5 Recent Case Study-Biochar Use in Multielement-Contaminated Mine Waste -- 5.1.6 Recent Case Study-Biochar Use in Cd- and Zn-Contaminated Paddy Soil -- 5.1.7 Recent Case Study-Designing Biochar Production and Use for Mine-Spoil Remediation -- 5.2 Conclusions -- References -- Further Reading -- 6 Potential of Biochar for Managing Metal Contaminated Areas, in Synergy With Phytomanagement or Other Management Options -- 6.1 Introduction -- 6.2 Metals and Metalloids in Soil -- 6.3 Biochar as a Soil Amendment for Risk-Based Land Management -- 6.4 Properties of Biochar in Relation to Trace Element Sorption -- 6.5 Effects of Adding Biochar to Soil -- 6.6 Management Options -- 6.6.1 Biochar Amendment in Combination With Phytomanagement -- 6.6.2 Biochar to Reduce Uptake of Hazardous Elements to Vegetable Crops -- 6.7 Field Experience to Date -- 6.8 Conclusions -- References -- 7 Biochar and Its Composites for Metal(loid) Removal From Aqueous Solutions -- 7.1 Metal Sorption on Various Biochars -- 7.1.1 Effect of Biochar Characteristics -- 7.1.2 Optimization of Metal Sorption -- 7.1.3 Metal-Sorption Mechanisms -- 7.2 Biochar Modifications -- 7.2.1 Chemical Activation -- 7.2.2 Iron Modifications -- 7.2.2.1 Magnetic Impregnation -- 7.2.2.2 Nano Zero-Valent Iron Modification -- 7.2.3 Layered Double-Hydroxide Modification -- 7.2.3.1 Synthesis of LDH/Biochar Composites -- 7.2.3.2 Adsorption Properties of LDH/Biochar Composites -- 7.2.4 Manganese-Oxide Coating -- 7.3 Engineering Implications of Biochar and Its Modifications -- Acknowledgments -- References -- Further Reading -- 8 Biochar for Anionic Contaminants Removal From Water -- 8.1 Anionic Contaminants in Water/Wastewater.
|
505 |
8 |
|
|a 10.4.5 Adsorption of Polychlorinated Biphenyls -- 10.4.5.1 Adsorption of Volatile Organic Compounds -- 10.5 Biochar for Adsorption of Inorganic Species -- 10.5.1 Adsorption of Heavy Metal Ions -- 10.5.1.1 Adsorption of Heavy Metal Ions From Water -- 10.5.1.2 Adsorption of Heavy Metals From Soil -- 10.5.2 Adsorption of Anions and Other Inorganic Pollutants -- 10.6 Modified Biochar as Adsorbent -- 10.6.1 Surface Functionalized Biochar as Adsorbent -- 10.6.1.1 Steam-Activated Biochar -- 10.6.1.2 Heat-Treated Biochar -- 10.6.1.3 Acid-Treated Biochar -- 10.6.1.4 Alkali-Treated Biochar -- 10.6.1.5 Biochar Modified With Nitrogen-Based Functional Groups -- 10.6.2 Biochar-Based Composite as Adsorbent -- 10.6.2.1 Nanometal Oxide/Hydroxide-Biochar Composites -- 10.6.2.2 Magnetic Biochar Composites as Adsorbent -- 10.6.2.3 Functional Nanoparticles-Coated Biochar -- 10.6.2.4 Impregnation of Functional Nanoparticles After Pyrolysis -- 10.7 Concluding Remarks and Future Perspectives -- References -- 11 Biochar for Sustainable Agriculture: Nutrient Dynamics, Soil Enzymes, and Crop Growth -- 11.1 Introduction -- 11.2 Evolution of Sustainable Agriculture -- 11.2.1 Malthusian Catastrophe and Green Revolution -- 11.2.2 Role of Biochar in Sustainable Agriculture -- 11.3 Influence of Biochar on Soil Nutrient Dynamics -- 11.3.1 Direct Nutrient Values of Biochar -- 11.3.2 Indirect Nutrient Values of Biochar -- 11.4 Influence of Biochar on Soil Enzymes -- 11.4.1 Influence of Biochar on Microorganism-Derived Soil Enzymes -- 11.4.2 Faunal Population Response to Biochar in Soil -- 11.4.3 Plant Root Response to Biochar in Soil -- 11.5 Effect of Biochar on Crop Growth -- 11.6 Conclusions -- References -- 12 Biochar Is a Potential Source of Silicon Fertilizer: An Overview -- 12.1 Introduction -- 12.2 Silicon -- 12.2.1 Forms of Silicon in Soil -- 12.2.2 Bioavailable Si in Soil.
|
505 |
8 |
|
|a 12.2.3 Effect of Si on Plants -- 12.3 Biochar -- 12.3.1 Sources of Feedstock for Biochar -- 12.3.2 Characterization of Biochar -- 12.3.3 Benefits of Biochar in Agricultural Practices -- 12.4 Biochar Is a Potential Source of Bioavailable Si -- 12.5 Conclusion and Perspectives -- Acknowledgments -- References -- 13 Sludge-Derived Biochar and Its Application in Soil Fixation -- 13.1 Sewage Sludge Production and Disposal in China -- 13.2 Pyrolysis of Sewage Sludge and the Environmental Safety of Heavy Metals in Sludge-Derived Biochars -- 13.2.1 Pyrolysis of Sewage Sludge Under Various Conditions -- 13.2.2 Environmental Safety of Heavy Metals in Sludge-Derived Biochars -- 13.3 Adsorption of Contaminants in Sludge-Derived Biochars -- 13.3.1 Cationic Metals -- 13.3.2 Oxyanionic Metals -- 13.3.3 Organic Contaminants -- 13.4 Metal Stabilization in Soils by Sludge-Derived Biochars -- 13.5 Ageing of Sludge-Derived Biochars in the Environment -- 13.6 Conclusions -- References -- Further Reading -- 14 Biochar as an (Im)mobilizing Agent for the Potentially Toxic Elements in Contaminated Soils -- 14.1 Introduction -- 14.2 Biochar as an Immobilizing Agent for Potentially Toxic Elements in Contaminated Soils -- 14.2.1 Reducing Mobility and Phytoavailability of Potentially Toxic Elements in Soils Using Biochar -- 14.2.2 Immobilization Mechanisms of Potentially Toxic Elements by Biochar -- 14.3 Biochar as a Mobilizing Agent for Potentially Toxic Elements in Contaminated Soils: Mobilization Mechanisms -- 14.4 Conclusions -- Acknowledgments -- References -- 15 Hydrothermal Carbonization for Hydrochar Production and Its Application -- 15.1 Introduction -- 15.2 Production of Hydrochar -- 15.2.1 Influence of Feedstock -- 15.2.2 Influence of Reaction Temperature -- 15.2.3 Influence of Retention Time -- 15.2.4 Influence of Catalyst -- 15.3 Properties of Hydrochar.
|
650 |
|
0 |
|a Biochar.
|
650 |
|
0 |
|a Biomass.
|
650 |
|
0 |
|a Biomass energy.
|
650 |
|
2 |
|a Charcoal
|0 (DNLM)D002606
|
650 |
|
2 |
|a Biomass
|0 (DNLM)D018533
|
650 |
|
6 |
|a Biocharbon.
|0 (CaQQLa)000288452
|
650 |
|
6 |
|a Biomasse.
|0 (CaQQLa)201-0219666
|
650 |
|
6 |
|a Bio�energie.
|0 (CaQQLa)201-0064449
|
650 |
|
7 |
|a TECHNOLOGY & ENGINEERING
|x Chemical & Biochemical.
|2 bisacsh
|
650 |
|
7 |
|a Biochar
|2 fast
|0 (OCoLC)fst01892969
|
650 |
|
7 |
|a Biomass
|2 fast
|0 (OCoLC)fst00832522
|
650 |
|
7 |
|a Biomass energy
|2 fast
|0 (OCoLC)fst00832532
|
700 |
1 |
|
|a Ok, Y�ong-sik,
|d 1944-
|e editor.
|
700 |
1 |
|
|a Tsang, Daniel C. W.,
|e editor.
|
700 |
1 |
|
|a Bolan, Nanthi,
|e editor.
|
700 |
1 |
|
|a Novak, Jeffrey M.,
|e editor.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128117293
|z Texto completo
|