Membrane transport in plants /
Clasificación: | Libro Electrónico |
---|---|
Otros Autores: | |
Formato: | Electrónico eBook |
Idioma: | Inglés |
Publicado: |
London, United Kingdom :
Academic Press,
2018.
|
Colección: | Advances in botanical research ;
v. 87. |
Temas: | |
Acceso en línea: | Texto completo Texto completo |
Tabla de Contenidos:
- Front Cover
- Membrane Transport in Plants
- Copyright
- Contents
- Contributors
- Preface
- Chapter One: The ABC of ABC Transporters
- 1. Structural and Enzymatic Properties
- 2. Substrates and Functions
- 2.1. Hormone Transport
- 2.2. Response to Biotic Stresses
- 2.3. Surface Structures
- 2.4. Detoxification
- 2.5. Additional Functions
- 3. Open Questions
- References
- Chapter Two: Plant Aquaporins
- 1. Introduction
- 2. Plant Aquaporin Diversity
- 2.1. Evolution and Diversity of Plant Aquaporins
- 2.2. Cellular and Subcellular Localisation
- 2.2.1. Plant AQPs Exhibit Membrane Specialisation
- 2.2.2. Increasing Evidence of Finite Subcellular Localisation
- 2.3. Specialised Substrate Specificities
- 2.3.1. Water
- 2.3.2. Hydrogen Peroxide
- 2.3.3. Ammonia and Urea
- 2.3.4. Metalloids
- 2.3.5. Gases
- 2.3.6. Ions
- 3. Molecular Function and Regulation
- 3.1. Structural Conformation and Specificity Determinants
- 3.1.1. A Conserved Overall Structural Conformation
- 3.1.2. Selectivity Filters
- 3.2. Various Levels of Regulation
- 3.2.1. Cellular Trafficking and Aquaporin Interactions
- 3.2.2. Gating
- 3.2.3. Cotranslational and Posttranslational Modification
- 3.2.4. Importance of the Lipidic Environment
- 4. Conclusion and Perspectives
- References
- Further Reading
- Chapter Three: Heavy Metal Pumps in Plants: Structure, Function and Origin
- 1. Copper and Zinc Homeostasis in Eukaryotes
- 2. P-Type ATPases Are Primary Active Pumps Found in All Cells
- 3. P1B-Type ATPases in Plants
- 4. Mechanism of Pumping by P-Type ATPases
- 5. Structure and Mechanism of P1B ATPases
- 6. Function of the Terminal Metal Binding Domains
- 7. Classification of P1B ATPases
- 8. The Origin of P1B ATPases in Plants
- 9. The Origin of P1B-2 ATPases in Plants
- 10. Future Perspectives
- References
- Further Reading.
- Chapter Four: Metal Transport in the Developing Plant Seed
- 1. General Principles in Plant Metal Homeostasis
- 2. Arabidopsis Seed Metal Homeostasis
- 3. Post-Phloem Metal Transport
- 4. From Seed Coat to the Endosperm, and Further to the Embryo
- 5. Metal Transport Within the Embryo
- 6. Do Tonoplast Transporters Control Metal Acquisition in the Embryo?
- Acknowledgements
- References
- Chapter Five: Transporters and Mechanisms of Hormone Transport in Arabidopsis
- 1. Introduction
- 2. Auxin
- 2.1. PINs as Polar Auxin Efflux Transporters
- 2.2. ABCBs as Non-Polar Auxin Efflux Transporters
- 2.3. AUX/LAX as Auxin Influx Transporters
- 2.4. Transporters Controlling Intracellular Auxin Homeostasis
- 2.5. Auxin Transporters Mediating Plant Adaptive Responses
- 3. Cytokinins
- 4. Abscisic Acid (ABA)
- 5. Gibberellins (GA)
- 6. Jasmonates
- 7. Ethylene
- 8. Brassinosteroids
- 9. Strigolactones
- 10. Conclusion
- Acknowledgements
- References
- Further Reading
- Chapter Six: Root Nitrate Uptake
- 1. Introduction
- 2. Characterization of NO3 Transport Systems
- 2.1. Root NO3 Uptake
- 2.2. Root NO3 Transporters
- 3. Regulation of Root NO3 Acquisition
- 3.1. Regulation of Root NO3 Transporters
- 3.2. Regulation of Root Development
- 3.3. Molecular Elements
- 3.3.1. Common Regulatory Elements for Root NO3- Transporters and Root Development
- 3.3.2. Regulatory Elements Specific for Root NO3- Transporters or Root Development
- 4. Nitrate Transporter-Based Strategies for Improving NUE in Crops
- 5. Conclusion
- References
- Chapter Seven: The Regulation of Ion Channels and Transporters in the Guard Cell
- 1. Introduction
- 2. Proton Pumps
- 2.1. Plasma Membrane H-ATPases
- 2.2. Vacuolar V-Type ATPases and Pyrophosphatases
- 3. K Channels and Transporters
- 3.1. Plasma Membrane K Channels.
- 3.2. Vacuolar K Transport
- 4. Anion Transport
- 4.1. Plasma Membrane Anion Channels
- 4.2. Vacuolar Anion Transport During Stomatal Movement
- 5. Ca Transporters
- 5.1. Plasma Membrane Ca Transporters
- 5.2. Vacuolar Membrane Ca Transporters
- 6. Summary
- Acknowledgement
- References
- Chapter Eight: The Pollen Plasma Membrane Permeome Converts Transmembrane Ion Transport Into Speed
- 1. Introduction
- 2. The Pollen Permeome-Ion Transporter Classes Expressed in Pollen
- 2.1. The Pollen Plasma Membrane Permeome
- 2.2. Ion Transport
- 2.2.1. Primary Active Transport and the PM Proton Pump
- 2.2.2. K Transport
- 2.2.3. Ca Transport
- 2.2.4. Anion Transport
- 2.3. Metabolite Transport
- 2.3.1. Sugar Transport
- 2.3.2. Amino Acid/Peptide Transport
- 2.3.3. Boron Transport
- 2.4. Heavy Metal Ion Transport
- 3. Concerted Action of Ion Transport Leads to Spatial Self-organization and Drives Tube Growth
- 3.1. Examples of Heterogeneous Distribution in the Plasma Membrane
- 3.2. Pattern Formation by Electrophoretic Mobility of Membrane Proteins
- 4. Conclusion
- Acknowledgements
- References
- Chapter Nine: Xylem Ion Loading and Its Implications for Plant Abiotic Stress Tolerance
- 1. Introduction
- 2. Essentiality of Xylem Ion Loading for Abiotic Stress Tolerance
- 3. The Molecular Identity of the Key Transport Systems Mediating Xylem Ion Loading
- 3.1. Sodium
- 3.1.1. SOS1
- 3.1.2. HKT
- 3.1.3. NSCC
- 3.1.4. CNGC
- 3.1.5. GLR
- 3.1.6. Aquaporins
- 3.1.7. CCC
- 3.2. Chloride
- 3.3. Potassium
- 4. Stress-Induced Regulation of Xylem Ion Loading and Its Implications
- 4.1. Sodium
- 4.1.1. Transcriptional Changes
- 4.1.2. Post-translational Regulation and Signalling
- 4.2. Chloride
- 4.2.1. Transcriptional Changes
- 4.2.2. Post-translational Regulation and Signalling
- 4.3. Potassium.
- 4.3.1. Transcriptional Changes
- 4.3.2. Post-translational Regulation and Signalling Pathways
- 5. Implications for Plant Breeding
- Acknowledgements
- References
- Further Reading
- Chapter Ten: The Role of Plant Transporters in Mycorrhizal Symbioses
- 1. Introduction
- 2. Ectomycorrhizal Symbiosis Requires Tightly Regulated Plant Membrane Transport
- 2.1. Plant Root�A�s Uptake of Mineral Nutrients and Water Transferred From Symbiotic Fungi
- 2.1.1. Plant Phosphate Nutrition
- 2.1.2. Ectomycorrhizal Contribution to Nitrogen Nutrition
- 2.1.3. Potassium
- 2.1.4. Ectomycorrhizal Fungi Modify Root Water Transport in Plants
- 2.2. Delivering Carbon Food for the Fungal Partner
- 2.3. Communication Between Symbiotic Partners
- 3. Arbuscular Mycorrhizal Fungi Control Plant Ion Channels and Transporters
- 3.1. Plant Phosphate Transporters Are Key Elements for Symbiotic Functioning
- 3.2. Root Mineral Nutrient Transport Adapts to Mycorrhizal Interaction
- 3.2.1. Nitrogen Acquisition by the Plant in Arbuscular Mycorrhizae
- 3.2.2. Potassium Transport in Arbuscular Mycorrhizae
- 3.2.3. Transport of Metal Nutrients
- 3.3. Water Transport Is Regulated by Symbiotic Partners
- 3.4. Sugars and Lipids Are Delivered to the Fungal Partner
- 3.4.1. Plant Carbohydrates Are Feeding AM Fungi
- 3.4.2. Plant Lipids Are Needed to Establish and Maintain AM Symbiosis
- 3.5. Membrane Transport Is Needed for Early Signalling to Establish Symbiosis
- 4. First Steps in the Study of Plant Nutrition in Orchid Mycorrhizae
- 5. Concluding Remarks and Perspectives
- Acknowledgements
- References
- Back Cover.