Cargando…

Membrane transport in plants /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Maurel, Christophe (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, United Kingdom : Academic Press, 2018.
Colección:Advances in botanical research ; v. 87.
Temas:
Acceso en línea:Texto completo
Texto completo
Tabla de Contenidos:
  • Front Cover
  • Membrane Transport in Plants
  • Copyright
  • Contents
  • Contributors
  • Preface
  • Chapter One: The ABC of ABC Transporters
  • 1. Structural and Enzymatic Properties
  • 2. Substrates and Functions
  • 2.1. Hormone Transport
  • 2.2. Response to Biotic Stresses
  • 2.3. Surface Structures
  • 2.4. Detoxification
  • 2.5. Additional Functions
  • 3. Open Questions
  • References
  • Chapter Two: Plant Aquaporins
  • 1. Introduction
  • 2. Plant Aquaporin Diversity
  • 2.1. Evolution and Diversity of Plant Aquaporins
  • 2.2. Cellular and Subcellular Localisation
  • 2.2.1. Plant AQPs Exhibit Membrane Specialisation
  • 2.2.2. Increasing Evidence of Finite Subcellular Localisation
  • 2.3. Specialised Substrate Specificities
  • 2.3.1. Water
  • 2.3.2. Hydrogen Peroxide
  • 2.3.3. Ammonia and Urea
  • 2.3.4. Metalloids
  • 2.3.5. Gases
  • 2.3.6. Ions
  • 3. Molecular Function and Regulation
  • 3.1. Structural Conformation and Specificity Determinants
  • 3.1.1. A Conserved Overall Structural Conformation
  • 3.1.2. Selectivity Filters
  • 3.2. Various Levels of Regulation
  • 3.2.1. Cellular Trafficking and Aquaporin Interactions
  • 3.2.2. Gating
  • 3.2.3. Cotranslational and Posttranslational Modification
  • 3.2.4. Importance of the Lipidic Environment
  • 4. Conclusion and Perspectives
  • References
  • Further Reading
  • Chapter Three: Heavy Metal Pumps in Plants: Structure, Function and Origin
  • 1. Copper and Zinc Homeostasis in Eukaryotes
  • 2. P-Type ATPases Are Primary Active Pumps Found in All Cells
  • 3. P1B-Type ATPases in Plants
  • 4. Mechanism of Pumping by P-Type ATPases
  • 5. Structure and Mechanism of P1B ATPases
  • 6. Function of the Terminal Metal Binding Domains
  • 7. Classification of P1B ATPases
  • 8. The Origin of P1B ATPases in Plants
  • 9. The Origin of P1B-2 ATPases in Plants
  • 10. Future Perspectives
  • References
  • Further Reading.
  • Chapter Four: Metal Transport in the Developing Plant Seed
  • 1. General Principles in Plant Metal Homeostasis
  • 2. Arabidopsis Seed Metal Homeostasis
  • 3. Post-Phloem Metal Transport
  • 4. From Seed Coat to the Endosperm, and Further to the Embryo
  • 5. Metal Transport Within the Embryo
  • 6. Do Tonoplast Transporters Control Metal Acquisition in the Embryo?
  • Acknowledgements
  • References
  • Chapter Five: Transporters and Mechanisms of Hormone Transport in Arabidopsis
  • 1. Introduction
  • 2. Auxin
  • 2.1. PINs as Polar Auxin Efflux Transporters
  • 2.2. ABCBs as Non-Polar Auxin Efflux Transporters
  • 2.3. AUX/LAX as Auxin Influx Transporters
  • 2.4. Transporters Controlling Intracellular Auxin Homeostasis
  • 2.5. Auxin Transporters Mediating Plant Adaptive Responses
  • 3. Cytokinins
  • 4. Abscisic Acid (ABA)
  • 5. Gibberellins (GA)
  • 6. Jasmonates
  • 7. Ethylene
  • 8. Brassinosteroids
  • 9. Strigolactones
  • 10. Conclusion
  • Acknowledgements
  • References
  • Further Reading
  • Chapter Six: Root Nitrate Uptake
  • 1. Introduction
  • 2. Characterization of NO3 Transport Systems
  • 2.1. Root NO3 Uptake
  • 2.2. Root NO3 Transporters
  • 3. Regulation of Root NO3 Acquisition
  • 3.1. Regulation of Root NO3 Transporters
  • 3.2. Regulation of Root Development
  • 3.3. Molecular Elements
  • 3.3.1. Common Regulatory Elements for Root NO3- Transporters and Root Development
  • 3.3.2. Regulatory Elements Specific for Root NO3- Transporters or Root Development
  • 4. Nitrate Transporter-Based Strategies for Improving NUE in Crops
  • 5. Conclusion
  • References
  • Chapter Seven: The Regulation of Ion Channels and Transporters in the Guard Cell
  • 1. Introduction
  • 2. Proton Pumps
  • 2.1. Plasma Membrane H-ATPases
  • 2.2. Vacuolar V-Type ATPases and Pyrophosphatases
  • 3. K Channels and Transporters
  • 3.1. Plasma Membrane K Channels.
  • 3.2. Vacuolar K Transport
  • 4. Anion Transport
  • 4.1. Plasma Membrane Anion Channels
  • 4.2. Vacuolar Anion Transport During Stomatal Movement
  • 5. Ca Transporters
  • 5.1. Plasma Membrane Ca Transporters
  • 5.2. Vacuolar Membrane Ca Transporters
  • 6. Summary
  • Acknowledgement
  • References
  • Chapter Eight: The Pollen Plasma Membrane Permeome Converts Transmembrane Ion Transport Into Speed
  • 1. Introduction
  • 2. The Pollen Permeome-Ion Transporter Classes Expressed in Pollen
  • 2.1. The Pollen Plasma Membrane Permeome
  • 2.2. Ion Transport
  • 2.2.1. Primary Active Transport and the PM Proton Pump
  • 2.2.2. K Transport
  • 2.2.3. Ca Transport
  • 2.2.4. Anion Transport
  • 2.3. Metabolite Transport
  • 2.3.1. Sugar Transport
  • 2.3.2. Amino Acid/Peptide Transport
  • 2.3.3. Boron Transport
  • 2.4. Heavy Metal Ion Transport
  • 3. Concerted Action of Ion Transport Leads to Spatial Self-organization and Drives Tube Growth
  • 3.1. Examples of Heterogeneous Distribution in the Plasma Membrane
  • 3.2. Pattern Formation by Electrophoretic Mobility of Membrane Proteins
  • 4. Conclusion
  • Acknowledgements
  • References
  • Chapter Nine: Xylem Ion Loading and Its Implications for Plant Abiotic Stress Tolerance
  • 1. Introduction
  • 2. Essentiality of Xylem Ion Loading for Abiotic Stress Tolerance
  • 3. The Molecular Identity of the Key Transport Systems Mediating Xylem Ion Loading
  • 3.1. Sodium
  • 3.1.1. SOS1
  • 3.1.2. HKT
  • 3.1.3. NSCC
  • 3.1.4. CNGC
  • 3.1.5. GLR
  • 3.1.6. Aquaporins
  • 3.1.7. CCC
  • 3.2. Chloride
  • 3.3. Potassium
  • 4. Stress-Induced Regulation of Xylem Ion Loading and Its Implications
  • 4.1. Sodium
  • 4.1.1. Transcriptional Changes
  • 4.1.2. Post-translational Regulation and Signalling
  • 4.2. Chloride
  • 4.2.1. Transcriptional Changes
  • 4.2.2. Post-translational Regulation and Signalling
  • 4.3. Potassium.
  • 4.3.1. Transcriptional Changes
  • 4.3.2. Post-translational Regulation and Signalling Pathways
  • 5. Implications for Plant Breeding
  • Acknowledgements
  • References
  • Further Reading
  • Chapter Ten: The Role of Plant Transporters in Mycorrhizal Symbioses
  • 1. Introduction
  • 2. Ectomycorrhizal Symbiosis Requires Tightly Regulated Plant Membrane Transport
  • 2.1. Plant Root�A�s Uptake of Mineral Nutrients and Water Transferred From Symbiotic Fungi
  • 2.1.1. Plant Phosphate Nutrition
  • 2.1.2. Ectomycorrhizal Contribution to Nitrogen Nutrition
  • 2.1.3. Potassium
  • 2.1.4. Ectomycorrhizal Fungi Modify Root Water Transport in Plants
  • 2.2. Delivering Carbon Food for the Fungal Partner
  • 2.3. Communication Between Symbiotic Partners
  • 3. Arbuscular Mycorrhizal Fungi Control Plant Ion Channels and Transporters
  • 3.1. Plant Phosphate Transporters Are Key Elements for Symbiotic Functioning
  • 3.2. Root Mineral Nutrient Transport Adapts to Mycorrhizal Interaction
  • 3.2.1. Nitrogen Acquisition by the Plant in Arbuscular Mycorrhizae
  • 3.2.2. Potassium Transport in Arbuscular Mycorrhizae
  • 3.2.3. Transport of Metal Nutrients
  • 3.3. Water Transport Is Regulated by Symbiotic Partners
  • 3.4. Sugars and Lipids Are Delivered to the Fungal Partner
  • 3.4.1. Plant Carbohydrates Are Feeding AM Fungi
  • 3.4.2. Plant Lipids Are Needed to Establish and Maintain AM Symbiosis
  • 3.5. Membrane Transport Is Needed for Early Signalling to Establish Symbiosis
  • 4. First Steps in the Study of Plant Nutrition in Orchid Mycorrhizae
  • 5. Concluding Remarks and Perspectives
  • Acknowledgements
  • References
  • Back Cover.