|
|
|
|
LEADER |
00000cam a2200000 i 4500 |
001 |
SCIDIR_on1061149906 |
003 |
OCoLC |
005 |
20231120010323.0 |
006 |
m o d |
007 |
cr cnu---unuuu |
008 |
181105s2018 enk o 000 0 eng d |
040 |
|
|
|a OPELS
|b eng
|e rda
|e pn
|c OPELS
|d N$T
|d UPM
|d OCLCF
|d UKMGB
|d YDX
|d OCLCQ
|d D6H
|d VLB
|d OCLCQ
|d LOA
|d OCLCQ
|d OCLCO
|d OCLCQ
|d OCLCO
|
016 |
7 |
|
|a 019119473
|2 Uk
|
019 |
|
|
|a 1063762721
|
020 |
|
|
|a 9780128096222
|q (electronic bk.)
|
020 |
|
|
|a 0128096225
|q (electronic bk.)
|
020 |
|
|
|z 9780128093900
|q (print)
|
020 |
|
|
|z 0128093900
|
035 |
|
|
|a (OCoLC)1061149906
|z (OCoLC)1063762721
|
050 |
|
4 |
|a QK725
|
072 |
|
7 |
|a SCI
|x 056000
|2 bisacsh
|
072 |
|
7 |
|a TVD
|2 bicssc
|
082 |
0 |
4 |
|a 571.6/4
|2 23
|
245 |
0 |
0 |
|a Membrane transport in plants /
|c edited by Christophe Maurel.
|
264 |
|
1 |
|a London, United Kingdom :
|b Academic Press,
|c 2018.
|
264 |
|
4 |
|c �2018
|
300 |
|
|
|a 1 online resource
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Advances in botanical research ;
|v volume 87
|
588 |
0 |
|
|a Online resource; title from PDF title page (ScienceDirect, viewed November 5, 2018).
|
505 |
0 |
|
|a Front Cover -- Membrane Transport in Plants -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: The ABC of ABC Transporters -- 1. Structural and Enzymatic Properties -- 2. Substrates and Functions -- 2.1. Hormone Transport -- 2.2. Response to Biotic Stresses -- 2.3. Surface Structures -- 2.4. Detoxification -- 2.5. Additional Functions -- 3. Open Questions -- References -- Chapter Two: Plant Aquaporins -- 1. Introduction -- 2. Plant Aquaporin Diversity -- 2.1. Evolution and Diversity of Plant Aquaporins -- 2.2. Cellular and Subcellular Localisation -- 2.2.1. Plant AQPs Exhibit Membrane Specialisation -- 2.2.2. Increasing Evidence of Finite Subcellular Localisation -- 2.3. Specialised Substrate Specificities -- 2.3.1. Water -- 2.3.2. Hydrogen Peroxide -- 2.3.3. Ammonia and Urea -- 2.3.4. Metalloids -- 2.3.5. Gases -- 2.3.6. Ions -- 3. Molecular Function and Regulation -- 3.1. Structural Conformation and Specificity Determinants -- 3.1.1. A Conserved Overall Structural Conformation -- 3.1.2. Selectivity Filters -- 3.2. Various Levels of Regulation -- 3.2.1. Cellular Trafficking and Aquaporin Interactions -- 3.2.2. Gating -- 3.2.3. Cotranslational and Posttranslational Modification -- 3.2.4. Importance of the Lipidic Environment -- 4. Conclusion and Perspectives -- References -- Further Reading -- Chapter Three: Heavy Metal Pumps in Plants: Structure, Function and Origin -- 1. Copper and Zinc Homeostasis in Eukaryotes -- 2. P-Type ATPases Are Primary Active Pumps Found in All Cells -- 3. P1B-Type ATPases in Plants -- 4. Mechanism of Pumping by P-Type ATPases -- 5. Structure and Mechanism of P1B ATPases -- 6. Function of the Terminal Metal Binding Domains -- 7. Classification of P1B ATPases -- 8. The Origin of P1B ATPases in Plants -- 9. The Origin of P1B-2 ATPases in Plants -- 10. Future Perspectives -- References -- Further Reading.
|
505 |
8 |
|
|a Chapter Four: Metal Transport in the Developing Plant Seed -- 1. General Principles in Plant Metal Homeostasis -- 2. Arabidopsis Seed Metal Homeostasis -- 3. Post-Phloem Metal Transport -- 4. From Seed Coat to the Endosperm, and Further to the Embryo -- 5. Metal Transport Within the Embryo -- 6. Do Tonoplast Transporters Control Metal Acquisition in the Embryo? -- Acknowledgements -- References -- Chapter Five: Transporters and Mechanisms of Hormone Transport in Arabidopsis -- 1. Introduction -- 2. Auxin -- 2.1. PINs as Polar Auxin Efflux Transporters -- 2.2. ABCBs as Non-Polar Auxin Efflux Transporters -- 2.3. AUX/LAX as Auxin Influx Transporters -- 2.4. Transporters Controlling Intracellular Auxin Homeostasis -- 2.5. Auxin Transporters Mediating Plant Adaptive Responses -- 3. Cytokinins -- 4. Abscisic Acid (ABA) -- 5. Gibberellins (GA) -- 6. Jasmonates -- 7. Ethylene -- 8. Brassinosteroids -- 9. Strigolactones -- 10. Conclusion -- Acknowledgements -- References -- Further Reading -- Chapter Six: Root Nitrate Uptake -- 1. Introduction -- 2. Characterization of NO3 Transport Systems -- 2.1. Root NO3 Uptake -- 2.2. Root NO3 Transporters -- 3. Regulation of Root NO3 Acquisition -- 3.1. Regulation of Root NO3 Transporters -- 3.2. Regulation of Root Development -- 3.3. Molecular Elements -- 3.3.1. Common Regulatory Elements for Root NO3- Transporters and Root Development -- 3.3.2. Regulatory Elements Specific for Root NO3- Transporters or Root Development -- 4. Nitrate Transporter-Based Strategies for Improving NUE in Crops -- 5. Conclusion -- References -- Chapter Seven: The Regulation of Ion Channels and Transporters in the Guard Cell -- 1. Introduction -- 2. Proton Pumps -- 2.1. Plasma Membrane H-ATPases -- 2.2. Vacuolar V-Type ATPases and Pyrophosphatases -- 3. K Channels and Transporters -- 3.1. Plasma Membrane K Channels.
|
505 |
8 |
|
|a 3.2. Vacuolar K Transport -- 4. Anion Transport -- 4.1. Plasma Membrane Anion Channels -- 4.2. Vacuolar Anion Transport During Stomatal Movement -- 5. Ca Transporters -- 5.1. Plasma Membrane Ca Transporters -- 5.2. Vacuolar Membrane Ca Transporters -- 6. Summary -- Acknowledgement -- References -- Chapter Eight: The Pollen Plasma Membrane Permeome Converts Transmembrane Ion Transport Into Speed -- 1. Introduction -- 2. The Pollen Permeome-Ion Transporter Classes Expressed in Pollen -- 2.1. The Pollen Plasma Membrane Permeome -- 2.2. Ion Transport -- 2.2.1. Primary Active Transport and the PM Proton Pump -- 2.2.2. K Transport -- 2.2.3. Ca Transport -- 2.2.4. Anion Transport -- 2.3. Metabolite Transport -- 2.3.1. Sugar Transport -- 2.3.2. Amino Acid/Peptide Transport -- 2.3.3. Boron Transport -- 2.4. Heavy Metal Ion Transport -- 3. Concerted Action of Ion Transport Leads to Spatial Self-organization and Drives Tube Growth -- 3.1. Examples of Heterogeneous Distribution in the Plasma Membrane -- 3.2. Pattern Formation by Electrophoretic Mobility of Membrane Proteins -- 4. Conclusion -- Acknowledgements -- References -- Chapter Nine: Xylem Ion Loading and Its Implications for Plant Abiotic Stress Tolerance -- 1. Introduction -- 2. Essentiality of Xylem Ion Loading for Abiotic Stress Tolerance -- 3. The Molecular Identity of the Key Transport Systems Mediating Xylem Ion Loading -- 3.1. Sodium -- 3.1.1. SOS1 -- 3.1.2. HKT -- 3.1.3. NSCC -- 3.1.4. CNGC -- 3.1.5. GLR -- 3.1.6. Aquaporins -- 3.1.7. CCC -- 3.2. Chloride -- 3.3. Potassium -- 4. Stress-Induced Regulation of Xylem Ion Loading and Its Implications -- 4.1. Sodium -- 4.1.1. Transcriptional Changes -- 4.1.2. Post-translational Regulation and Signalling -- 4.2. Chloride -- 4.2.1. Transcriptional Changes -- 4.2.2. Post-translational Regulation and Signalling -- 4.3. Potassium.
|
505 |
8 |
|
|a 4.3.1. Transcriptional Changes -- 4.3.2. Post-translational Regulation and Signalling Pathways -- 5. Implications for Plant Breeding -- Acknowledgements -- References -- Further Reading -- Chapter Ten: The Role of Plant Transporters in Mycorrhizal Symbioses -- 1. Introduction -- 2. Ectomycorrhizal Symbiosis Requires Tightly Regulated Plant Membrane Transport -- 2.1. Plant Root�A�s Uptake of Mineral Nutrients and Water Transferred From Symbiotic Fungi -- 2.1.1. Plant Phosphate Nutrition -- 2.1.2. Ectomycorrhizal Contribution to Nitrogen Nutrition -- 2.1.3. Potassium -- 2.1.4. Ectomycorrhizal Fungi Modify Root Water Transport in Plants -- 2.2. Delivering Carbon Food for the Fungal Partner -- 2.3. Communication Between Symbiotic Partners -- 3. Arbuscular Mycorrhizal Fungi Control Plant Ion Channels and Transporters -- 3.1. Plant Phosphate Transporters Are Key Elements for Symbiotic Functioning -- 3.2. Root Mineral Nutrient Transport Adapts to Mycorrhizal Interaction -- 3.2.1. Nitrogen Acquisition by the Plant in Arbuscular Mycorrhizae -- 3.2.2. Potassium Transport in Arbuscular Mycorrhizae -- 3.2.3. Transport of Metal Nutrients -- 3.3. Water Transport Is Regulated by Symbiotic Partners -- 3.4. Sugars and Lipids Are Delivered to the Fungal Partner -- 3.4.1. Plant Carbohydrates Are Feeding AM Fungi -- 3.4.2. Plant Lipids Are Needed to Establish and Maintain AM Symbiosis -- 3.5. Membrane Transport Is Needed for Early Signalling to Establish Symbiosis -- 4. First Steps in the Study of Plant Nutrition in Orchid Mycorrhizae -- 5. Concluding Remarks and Perspectives -- Acknowledgements -- References -- Back Cover.
|
650 |
|
0 |
|a Plant membranes.
|
650 |
|
0 |
|a Biological transport.
|
650 |
|
2 |
|a Biological Transport
|0 (DNLM)D001692
|
650 |
|
6 |
|a Plantes
|x Membranes.
|0 (CaQQLa)201-0068129
|
650 |
|
6 |
|a Transport biologique.
|0 (CaQQLa)201-0011115
|
650 |
|
7 |
|a SCIENCE
|x Life Sciences
|x Anatomy & Physiology.
|2 bisacsh
|
650 |
|
7 |
|a Biological transport
|2 fast
|0 (OCoLC)fst00832345
|
650 |
|
7 |
|a Plant membranes
|2 fast
|0 (OCoLC)fst01065543
|
700 |
1 |
|
|a Maurel, Christophe,
|e editor.
|
776 |
0 |
8 |
|i Print version:
|t Membrane transport in plants.
|d London, United Kingdom : Academic Press, 2018
|z 0128093900
|z 9780128093900
|w (OCoLC)1031458155
|
830 |
|
0 |
|a Advances in botanical research ;
|v v. 87.
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/bookseries/00652296/87
|z Texto completo
|
856 |
4 |
0 |
|u https://sciencedirect.uam.elogim.com/science/book/9780128093900
|z Texto completo
|