Cargando…

Membrane transport in plants /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Maurel, Christophe (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: London, United Kingdom : Academic Press, 2018.
Colección:Advances in botanical research ; v. 87.
Temas:
Acceso en línea:Texto completo
Texto completo

MARC

LEADER 00000cam a2200000 i 4500
001 SCIDIR_on1061149906
003 OCoLC
005 20231120010323.0
006 m o d
007 cr cnu---unuuu
008 181105s2018 enk o 000 0 eng d
040 |a OPELS  |b eng  |e rda  |e pn  |c OPELS  |d N$T  |d UPM  |d OCLCF  |d UKMGB  |d YDX  |d OCLCQ  |d D6H  |d VLB  |d OCLCQ  |d LOA  |d OCLCQ  |d OCLCO  |d OCLCQ  |d OCLCO 
016 7 |a 019119473  |2 Uk 
019 |a 1063762721 
020 |a 9780128096222  |q (electronic bk.) 
020 |a 0128096225  |q (electronic bk.) 
020 |z 9780128093900  |q (print) 
020 |z 0128093900 
035 |a (OCoLC)1061149906  |z (OCoLC)1063762721 
050 4 |a QK725 
072 7 |a SCI  |x 056000  |2 bisacsh 
072 7 |a TVD  |2 bicssc 
082 0 4 |a 571.6/4  |2 23 
245 0 0 |a Membrane transport in plants /  |c edited by Christophe Maurel. 
264 1 |a London, United Kingdom :  |b Academic Press,  |c 2018. 
264 4 |c �2018 
300 |a 1 online resource 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Advances in botanical research ;  |v volume 87 
588 0 |a Online resource; title from PDF title page (ScienceDirect, viewed November 5, 2018). 
505 0 |a Front Cover -- Membrane Transport in Plants -- Copyright -- Contents -- Contributors -- Preface -- Chapter One: The ABC of ABC Transporters -- 1. Structural and Enzymatic Properties -- 2. Substrates and Functions -- 2.1. Hormone Transport -- 2.2. Response to Biotic Stresses -- 2.3. Surface Structures -- 2.4. Detoxification -- 2.5. Additional Functions -- 3. Open Questions -- References -- Chapter Two: Plant Aquaporins -- 1. Introduction -- 2. Plant Aquaporin Diversity -- 2.1. Evolution and Diversity of Plant Aquaporins -- 2.2. Cellular and Subcellular Localisation -- 2.2.1. Plant AQPs Exhibit Membrane Specialisation -- 2.2.2. Increasing Evidence of Finite Subcellular Localisation -- 2.3. Specialised Substrate Specificities -- 2.3.1. Water -- 2.3.2. Hydrogen Peroxide -- 2.3.3. Ammonia and Urea -- 2.3.4. Metalloids -- 2.3.5. Gases -- 2.3.6. Ions -- 3. Molecular Function and Regulation -- 3.1. Structural Conformation and Specificity Determinants -- 3.1.1. A Conserved Overall Structural Conformation -- 3.1.2. Selectivity Filters -- 3.2. Various Levels of Regulation -- 3.2.1. Cellular Trafficking and Aquaporin Interactions -- 3.2.2. Gating -- 3.2.3. Cotranslational and Posttranslational Modification -- 3.2.4. Importance of the Lipidic Environment -- 4. Conclusion and Perspectives -- References -- Further Reading -- Chapter Three: Heavy Metal Pumps in Plants: Structure, Function and Origin -- 1. Copper and Zinc Homeostasis in Eukaryotes -- 2. P-Type ATPases Are Primary Active Pumps Found in All Cells -- 3. P1B-Type ATPases in Plants -- 4. Mechanism of Pumping by P-Type ATPases -- 5. Structure and Mechanism of P1B ATPases -- 6. Function of the Terminal Metal Binding Domains -- 7. Classification of P1B ATPases -- 8. The Origin of P1B ATPases in Plants -- 9. The Origin of P1B-2 ATPases in Plants -- 10. Future Perspectives -- References -- Further Reading. 
505 8 |a Chapter Four: Metal Transport in the Developing Plant Seed -- 1. General Principles in Plant Metal Homeostasis -- 2. Arabidopsis Seed Metal Homeostasis -- 3. Post-Phloem Metal Transport -- 4. From Seed Coat to the Endosperm, and Further to the Embryo -- 5. Metal Transport Within the Embryo -- 6. Do Tonoplast Transporters Control Metal Acquisition in the Embryo? -- Acknowledgements -- References -- Chapter Five: Transporters and Mechanisms of Hormone Transport in Arabidopsis -- 1. Introduction -- 2. Auxin -- 2.1. PINs as Polar Auxin Efflux Transporters -- 2.2. ABCBs as Non-Polar Auxin Efflux Transporters -- 2.3. AUX/LAX as Auxin Influx Transporters -- 2.4. Transporters Controlling Intracellular Auxin Homeostasis -- 2.5. Auxin Transporters Mediating Plant Adaptive Responses -- 3. Cytokinins -- 4. Abscisic Acid (ABA) -- 5. Gibberellins (GA) -- 6. Jasmonates -- 7. Ethylene -- 8. Brassinosteroids -- 9. Strigolactones -- 10. Conclusion -- Acknowledgements -- References -- Further Reading -- Chapter Six: Root Nitrate Uptake -- 1. Introduction -- 2. Characterization of NO3 Transport Systems -- 2.1. Root NO3 Uptake -- 2.2. Root NO3 Transporters -- 3. Regulation of Root NO3 Acquisition -- 3.1. Regulation of Root NO3 Transporters -- 3.2. Regulation of Root Development -- 3.3. Molecular Elements -- 3.3.1. Common Regulatory Elements for Root NO3- Transporters and Root Development -- 3.3.2. Regulatory Elements Specific for Root NO3- Transporters or Root Development -- 4. Nitrate Transporter-Based Strategies for Improving NUE in Crops -- 5. Conclusion -- References -- Chapter Seven: The Regulation of Ion Channels and Transporters in the Guard Cell -- 1. Introduction -- 2. Proton Pumps -- 2.1. Plasma Membrane H-ATPases -- 2.2. Vacuolar V-Type ATPases and Pyrophosphatases -- 3. K Channels and Transporters -- 3.1. Plasma Membrane K Channels. 
505 8 |a 3.2. Vacuolar K Transport -- 4. Anion Transport -- 4.1. Plasma Membrane Anion Channels -- 4.2. Vacuolar Anion Transport During Stomatal Movement -- 5. Ca Transporters -- 5.1. Plasma Membrane Ca Transporters -- 5.2. Vacuolar Membrane Ca Transporters -- 6. Summary -- Acknowledgement -- References -- Chapter Eight: The Pollen Plasma Membrane Permeome Converts Transmembrane Ion Transport Into Speed -- 1. Introduction -- 2. The Pollen Permeome-Ion Transporter Classes Expressed in Pollen -- 2.1. The Pollen Plasma Membrane Permeome -- 2.2. Ion Transport -- 2.2.1. Primary Active Transport and the PM Proton Pump -- 2.2.2. K Transport -- 2.2.3. Ca Transport -- 2.2.4. Anion Transport -- 2.3. Metabolite Transport -- 2.3.1. Sugar Transport -- 2.3.2. Amino Acid/Peptide Transport -- 2.3.3. Boron Transport -- 2.4. Heavy Metal Ion Transport -- 3. Concerted Action of Ion Transport Leads to Spatial Self-organization and Drives Tube Growth -- 3.1. Examples of Heterogeneous Distribution in the Plasma Membrane -- 3.2. Pattern Formation by Electrophoretic Mobility of Membrane Proteins -- 4. Conclusion -- Acknowledgements -- References -- Chapter Nine: Xylem Ion Loading and Its Implications for Plant Abiotic Stress Tolerance -- 1. Introduction -- 2. Essentiality of Xylem Ion Loading for Abiotic Stress Tolerance -- 3. The Molecular Identity of the Key Transport Systems Mediating Xylem Ion Loading -- 3.1. Sodium -- 3.1.1. SOS1 -- 3.1.2. HKT -- 3.1.3. NSCC -- 3.1.4. CNGC -- 3.1.5. GLR -- 3.1.6. Aquaporins -- 3.1.7. CCC -- 3.2. Chloride -- 3.3. Potassium -- 4. Stress-Induced Regulation of Xylem Ion Loading and Its Implications -- 4.1. Sodium -- 4.1.1. Transcriptional Changes -- 4.1.2. Post-translational Regulation and Signalling -- 4.2. Chloride -- 4.2.1. Transcriptional Changes -- 4.2.2. Post-translational Regulation and Signalling -- 4.3. Potassium. 
505 8 |a 4.3.1. Transcriptional Changes -- 4.3.2. Post-translational Regulation and Signalling Pathways -- 5. Implications for Plant Breeding -- Acknowledgements -- References -- Further Reading -- Chapter Ten: The Role of Plant Transporters in Mycorrhizal Symbioses -- 1. Introduction -- 2. Ectomycorrhizal Symbiosis Requires Tightly Regulated Plant Membrane Transport -- 2.1. Plant Root�A�s Uptake of Mineral Nutrients and Water Transferred From Symbiotic Fungi -- 2.1.1. Plant Phosphate Nutrition -- 2.1.2. Ectomycorrhizal Contribution to Nitrogen Nutrition -- 2.1.3. Potassium -- 2.1.4. Ectomycorrhizal Fungi Modify Root Water Transport in Plants -- 2.2. Delivering Carbon Food for the Fungal Partner -- 2.3. Communication Between Symbiotic Partners -- 3. Arbuscular Mycorrhizal Fungi Control Plant Ion Channels and Transporters -- 3.1. Plant Phosphate Transporters Are Key Elements for Symbiotic Functioning -- 3.2. Root Mineral Nutrient Transport Adapts to Mycorrhizal Interaction -- 3.2.1. Nitrogen Acquisition by the Plant in Arbuscular Mycorrhizae -- 3.2.2. Potassium Transport in Arbuscular Mycorrhizae -- 3.2.3. Transport of Metal Nutrients -- 3.3. Water Transport Is Regulated by Symbiotic Partners -- 3.4. Sugars and Lipids Are Delivered to the Fungal Partner -- 3.4.1. Plant Carbohydrates Are Feeding AM Fungi -- 3.4.2. Plant Lipids Are Needed to Establish and Maintain AM Symbiosis -- 3.5. Membrane Transport Is Needed for Early Signalling to Establish Symbiosis -- 4. First Steps in the Study of Plant Nutrition in Orchid Mycorrhizae -- 5. Concluding Remarks and Perspectives -- Acknowledgements -- References -- Back Cover. 
650 0 |a Plant membranes. 
650 0 |a Biological transport. 
650 2 |a Biological Transport  |0 (DNLM)D001692 
650 6 |a Plantes  |x Membranes.  |0 (CaQQLa)201-0068129 
650 6 |a Transport biologique.  |0 (CaQQLa)201-0011115 
650 7 |a SCIENCE  |x Life Sciences  |x Anatomy & Physiology.  |2 bisacsh 
650 7 |a Biological transport  |2 fast  |0 (OCoLC)fst00832345 
650 7 |a Plant membranes  |2 fast  |0 (OCoLC)fst01065543 
700 1 |a Maurel, Christophe,  |e editor. 
776 0 8 |i Print version:  |t Membrane transport in plants.  |d London, United Kingdom : Academic Press, 2018  |z 0128093900  |z 9780128093900  |w (OCoLC)1031458155 
830 0 |a Advances in botanical research ;  |v v. 87. 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/bookseries/00652296/87  |z Texto completo 
856 4 0 |u https://sciencedirect.uam.elogim.com/science/book/9780128093900  |z Texto completo