Cargando…

Smart textiles for in situ monitoring of composites /

Smart Textiles for in situ Monitoring of Composites proposes a 'smart textile' approach to help solve the problem of real-time monitoring of the structural health of composites. The book combines textiles, composites and structural health monitoring knowledge to present an integrated appro...

Descripción completa

Detalles Bibliográficos
Clasificación:Libro Electrónico
Autor principal: Koncar, Vladan (Autor)
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Duxford : Woodhead Publishing, [2019]
Colección:Textile Institute book series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Smart Textiles for In Situ Monitoring of Composites
  • The Textile Institute Book Series
  • Recently Published and Upcoming Titles in The Textile Institute Book Series
  • Related Titles
  • Smart Textiles for In Situ Monitoring of Composites
  • Copyright
  • Contents
  • General introduction
  • Smart textiles
  • References
  • Further reading
  • 1
  • Smart textiles for monitoring and measurement applications
  • 1.1 Introduction
  • 1.2 Smart textiles
  • 1.3 Sensors-definitions and classifications
  • 1.3.1 Mechanical sensors-general definitions
  • 1.3.1.1 Strain gauges
  • 1.3.2 Capacitive sensors
  • 1.3.3 Piezoelectric sensors
  • 1.3.4 Optical fibers based sensors
  • 1.3.5 Textile strain gauges with mobile electrodes
  • 1.3.6 Piezoresistive textile sensors-conductive polymer composites based
  • 1.3.6.1 Electrical properties and percolation phenomenon
  • 1.3.6.2 Conductive polymer composite behavior in the presence of deformations (elongation and pressure)
  • 1.3.7 Mechanical properties of conductive polymer composites
  • 1.3.7.1 Microruptures phenomenon of piezoresistive coatings
  • 1.4 Connectors
  • 1.4.1 Basic definitions
  • 1.4.2 Washability and reliability of connecting devices
  • 1.4.2.1 Washing test
  • 1.4.2.2 Washability of silver conductive thread
  • 1.4.2.3 Washability of nickel-plated copper wire
  • 1.4.2.4 Washability of silver-plated silver copper tinsel
  • 1.4.2.5 Washability of interconnections
  • 1.4.3 Samples for LATEX-based barrier
  • 1.4.3.1 Textiles with three LEDs
  • 1.4.3.2 Textiles with LEDs array
  • 1.4.4 Washing tests
  • 1.4.4.1 Washability of the textiles with three LEDs
  • 1.4.4.2 Washability of the textiles with LEDs array
  • 1.4.5 Conclusion
  • 1.5 Conductive polymers, fibers, and structures
  • 1.5.1 Intrinsically conductive polymers
  • 1.5.1.1 Poly[3,4-(ethylenedioxy)thiophene].
  • 1.5.1.2 Poly[3,4-(ethylenedioxy)thiophene]-compl-poly(4-vinylbenzenesulfonic acid)
  • Application-Polypyrrole
  • Application-Polyaniline
  • Application-PEDOT:PSS (PEDOT-compl-PSS)
  • Secondary dopant
  • 1.5.2 Carbon fibers piezoresistivity
  • 1.5.3 Sensors based on conductive textiles structures
  • 1.5.3.1 Comparative studies of different types of yarns and structures
  • 1.5.3.2 Sensory material deposited by printing on fabrics
  • 1.5.3.3 Implementation by in situ polymerization
  • 1.5.3.4 Piezoresistive coating compounds
  • 1.5.3.5 Fibrous piezoresistive strain gauges
  • 1.5.4 Fibrous sensors based on piezoresistive filaments
  • 1.5.5 Conclusion
  • 1.6 Materials and sensors for glass fibers based composites monitoring
  • 1.6.1 Preparation of the aqueous dispersion of conducting polymer complex, Poly[3,4-(ethylenedioxy)thiophene-compl-poly(4-vinylbe ...
  • 1.6.2 Textile sensors development steps
  • 1.6.3 Electrical resistance detection of copper wires
  • 1.6.4 Textile sensors production according to percolation threshold final study
  • 1.6.5 Design and production of laboratory equipment for performing new coating method by using metal rollers onto the yarn and pr ...
  • 1.6.6 Procedure conditions determination for performing new coating method by using metal rollers onto the yarn
  • 1.6.7 Characterization of textile sensors before insertion in textile preforms-methods used
  • 1.6.7.1 Scanning electron microscopy with energy dispersive spectroscopy of yarns and textile sensors
  • 1.6.7.2 Tensile testing of yarns for textile sensors preparation
  • 1.6.7.3 Electromechanical characterization of produced textile sensors
  • 1.6.7.4 Conductivity dependence of textile sensors on climatic conditions
  • 1.6.7.5 Consolidation of 2D textile preforms and textile sensors connection with measuring instrument.
  • 1.6.7.6 Electromechanical characterization of textile reinforced 2D thermoplastic composites with integrated textile sensors
  • 1.6.7.7 Characterization of textile reinforced 2D thermoplastic composites with integrated textile sensors-tomography analysis
  • 1.6.7.8 Thermal properties determination
  • 1.6.7.9 Thermogravimetric Analysis
  • 1.6.7.10 Microscale Combustion Calorimetry analysis
  • 1.6.7.11 Limiting Oxygen Index
  • 1.6.7.12 Interface phenomena of sensor yarns and related textile reinforced 2D thermoplastic composites
  • 1.6.7.13 Adhesion parameters at the interface
  • References
  • Further reading
  • 2
  • Composites and hybrid structures
  • 2.1 Composites-terms and definitions
  • 2.1.1 Introduction
  • 2.1.2 Laminate fiber reinforced composites
  • 2.2 Textile reinforced composites
  • 2.2.1 Woven fiber reinforced composites
  • 2.2.1.1 2D woven fabric
  • 2.2.1.2 2D weaving process
  • 2.2.1.3 Multilayered (or 3D woven) fabric
  • 2.2.1.4 3D weaving process
  • 2.2.1.5 Multiaxis weaving process
  • 2.2.1.6 Two dimensional multiaxis weaving
  • 2.2.1.7 Multilayer multiaxis weaving
  • 2.2.1.8 Polar multilayer multiaxis weaving
  • 2.2.2 Knitted composites
  • 2.2.2.1 Noncrimp fabrics
  • 2.2.3 Braided composites
  • 2.2.4 Z-pinned composites
  • 2.3 Outlook-composite structures
  • 2.4 Reinforcing fibers
  • 2.4.1 Glass fibers
  • 2.4.1.1 Sheet molding compound/bulk molding compound
  • 2.4.1.2 Open mold/open processes
  • 2.4.1.3 Resin transfer molding
  • 2.4.1.4 Continuous processing
  • 2.4.1.5 Glass mat thermoplastic/long fibers thermoplastic
  • 2.4.2 Carbon fibers
  • 2.4.3 Aramid fibers
  • 2.4.3.1 Metaaramid fiber
  • 2.4.3.2 Para-aramid fiber
  • 2.4.4 Natural fibers
  • 2.5 Matrices
  • 2.5.1 Thermosetting matrices
  • 2.5.1.1 Unsaturated polyester resins
  • 2.5.1.2 Phenolic resins
  • 2.5.1.3 Epoxy resins
  • 2.5.2 Thermoplastic matrices
  • 2.5.2.1 Polyolefin.
  • 2.5.2.2 Polyketone resins
  • 2.5.2.3 Polyether imide
  • 2.5.2.4 Polyarylene sulfide resins
  • 2.5.2.5 Bio-based resins
  • 2.6 Failure mechanisms in composites
  • 2.6.1 Damage
  • 2.6.2 Defect/flaw
  • 2.6.3 Failure
  • 2.6.4 Performance
  • 2.6.5 Health
  • 2.6.6 Health monitoring
  • 2.6.7 Structural identification
  • 2.6.8 Structural health monitoring
  • 2.7 Hybrid structures, production methodology and principles, state of the art
  • 2.8 Hybrid structures-bonding issues-innovative joining techniques
  • 2.8.1 Continuous laser welding
  • 2.8.2 Friction welding
  • 2.8.3 Magnetic pulse welding
  • 2.8.4 Electromagnetic driven self-piercing riveting
  • 2.8.5 Electron beam welding
  • 2.9 Conclusion
  • References
  • Further Reading
  • 3
  • Structural health monitoring of composite structures
  • 3.1 Health monitoring definitions
  • 3.2 State of the art of monitoring techniques
  • 3.2.1 Drapability assessment of composite preforms
  • 3.2.2 Biaxial tensile testing of flat structures
  • 3.2.3 Crash tests
  • 3.2.4 Split Hopkinson bar test-characterization under dynamic conditions
  • 3.3 Characterization of textile sensors before insertion in textile preforms
  • 3.3.1 Textile sensors production according to percolation threshold final study
  • 3.3.2 Results-viscosity determination of final conductive dispersion used
  • 3.3.3 Results and discussion-tensile properties of yarns
  • 3.3.4 Results and discussion-electromechanical properties of textile sensors
  • 3.4 Characterization of textile sensors after insertion in textile preforms
  • 3.4.1 Textile sensors integration during weaving of 2D fabric, consolidation pretest analysis
  • 3.4.2 Results-GF/PP composites with integrated GF/PP sensors
  • 3.4.3 GF/PP composites with integrated GF sensors
  • 3.4.4 GF/PA66 composites with integrated GF/PA66 or GF sensors
  • 3.5 Results and discussion-interface phenomena.
  • 3.6 Results and discussion-tomography analysis of textile reinforced 2D thermoplastic composites with integrated textile sensors
  • 3.7 Results and discussion-electrical resistance dependence of textile sensors on climatic conditions
  • 3.8 Results-SEM and EDS analysis of yarns
  • 3.9 Results and discussion-thermal properties of yarns and textile reinforced 2D thermoplastic composites with integrated senso ...
  • 3.9.1 Thermogravimetric analysis
  • 3.9.2 Results and discussion-microscale combustion calorimetry analysis
  • 3.9.3 Results and discussion-limiting oxygen index
  • 3.10 Toward wireless structural health monitoring
  • 3.11 Predictive maintenance concept
  • 3.12 Conclusion
  • References
  • Further reading
  • 4
  • Structural health monitoring of processes related to composite manufacturing
  • 4.1 Study case 1, interlock weaving process monitoring
  • 4.1.1 Design, production, and characterization of sensory yarns
  • 4.1.2 Preparation of PEDOT:PSS dedicated to yarns functionalization
  • 4.1.2.1 Clevios CPP105D
  • 4.1.2.2 Polyvinilic alcohol
  • 4.1.2.3 Coating-setup of the process
  • 4.1.2.4 Coating method on films
  • 4.1.2.5 Coating method on yarns
  • 4.1.3 Production of sensors
  • 4.1.3.1 General shape
  • 4.1.3.2 Glass fibers yarn
  • 4.1.3.3 Precoating with polyvinilic alcohol
  • 4.1.3.4 Connection yarns
  • 4.1.3.5 Sensors protection
  • 4.1.4 Tensile testing machine (MTS insight 10)
  • 4.1.4.1 Yarns testing procedure
  • 4.1.5 Data recording system
  • 4.1.5.1 Measurement method-multimeter Keithley 3706 with data acquisition card 3724
  • 4.1.6 Data treatment
  • 4.1.6.1 Signal filtering
  • 4.1.6.2 Sensors gauge factor calculation
  • 4.1.7 Tests and characterization
  • 4.1.7.1 Electrical resistivity and computation
  • 4.1.7.2 Percolation threshold
  • 4.1.8 Mechanical behavior of glass fibers
  • 4.1.9 Characterization of coated layers.