Cargando…

Recycling of polyethylene terephthalate bottles /

Detalles Bibliográficos
Clasificación:Libro Electrónico
Otros Autores: Thomas, Sabu (Editor ), Rane, Ajay V., 1987- (Editor ), Kanny, Krishnan (Editor ), Abitha V. K. (Editor ), Thomas, Martin George (Editor )
Formato: Electrónico eBook
Idioma:Inglés
Publicado: Kidlington, Oxford : William Andrew, [2019]
Colección:PDL handbook series.
Temas:
Acceso en línea:Texto completo
Tabla de Contenidos:
  • Front Cover
  • Recycling of Polyethylene Terephthalate Bottles
  • Copyright Page
  • Contents
  • List of Contributors
  • 1 PET Chemistry
  • 1.1 Introduction
  • 1.2 Physical and Chemical Properties
  • 1.3 Synthesis and its Chemistry
  • 1.4 Continuous Melt Phase Polymerization
  • 1.5 Catalyst Chemistry and Mechanism
  • 1.6 Chain Extender
  • 1.7 Structure-Property Relationship of PET
  • 1.8 New Enzymatic Route to Synthesize Polyester
  • 1.9 Conclusion
  • References
  • 2 Regulations on Recycling PET Bottles
  • 2.1 Introduction
  • 2.2 Conclusions
  • Acknowledgments
  • References
  • Further Reading
  • 3 Materials Recovery, Direct Reuse and Incineration of PET Bottles
  • 3.1 Introduction
  • 3.2 An Overview of Polyethylene Terephthalate Bottle Management
  • 3.2.1 Recycling of Polyethylene Terephthalate Bottle
  • 3.2.1.1 Collection
  • 3.2.1.2 Sorting
  • 3.2.1.3 Cleaning
  • 3.2.1.4 Final Separation
  • 3.2.2 Types of Polyethylene Terephthalate Recycling
  • 3.2.2.1 Primary Recycling
  • 3.2.2.2 Secondary Recycling
  • 3.2.2.3 Feedstock or Tertiary Recycling
  • 3.2.2.4 Quaternary Recycling
  • 3.2.3 Materials Recovery From Polyethylene Terephthalate Bottles
  • 3.2.3.1 Direct Reuse of Polyethylene Terephthalate Bottles
  • 3.2.4 Incineration of Polyethylene Terephthalate Waste
  • 3.2.5 Landfilling of Polyethylene Terephthalate Waste
  • 3.3 Conclusion
  • References
  • 4 Chemical Depolymerization of PET Bottles via Glycolysis
  • 4.1 Introduction
  • 4.1.1 Primary Recycling
  • 4.1.2 Secondary Recycling
  • 4.1.3 Tertiary or Chemical Recycling
  • 4.1.4 Quaternary Recycling
  • 4.2 Glycolysis
  • 4.2.1 Catalyzed Glycolysis
  • 4.2.1.1 Metal Derivatives
  • 4.2.1.2 Zeolites
  • 4.2.1.3 Ionic Liquids
  • 4.2.2 Solvent-Assisted Glycolysis
  • 4.2.3 Supercritical Glycolysis
  • 4.2.4 Microwave-Assisted Glycolysis
  • 4.3 Factors Influencing Glycolysis
  • 4.3.1 Contaminant.
  • 4.3.2 Stirring Speed
  • 4.3.3 Particle Size
  • 4.3.4 Solvent Ratio
  • 4.3.5 Reactions Conditions
  • 4.4 Advantages and Drawbacks of Glycolysis
  • 4.5 Analytical Techniques
  • 4.6 Applications of the Glycolyzed Products
  • 4.6.1 Polyurethane Products
  • 4.6.2 Unsaturated Polyesters
  • 4.6.3 Acrylate/Methacrylate-Terminated products
  • 4.7 Conclusion
  • References
  • Further Reading
  • 5 Depolymerization of PET Bottle via Methanolysis and Hydrolysis
  • 5.1 Introduction
  • 5.2 Depolymerization of Polyethylene Terephthalate Bottles
  • 5.2.1 Glycolysis
  • 5.2.2 Methanolysis
  • 5.2.2.1 Liquid Methanolysis
  • 5.2.2.2 Vapor Methanolysis
  • 5.2.2.3 Supercritical Methanolysis
  • 5.2.2.4 Hydrolysis of Dimethyl Terephthalate
  • 5.2.2.5 Purification of Dimethyl Terephthalate and Ethylene Glycol
  • 5.2.3 Hydrolysis
  • 5.2.3.1 Acid Hydrolysis
  • 5.2.3.2 Alkaline Hydrolysis
  • 5.2.3.3 Neutral Hydrolysis
  • 5.3 Depolymerization Kinetics of Polyethylene Terephthalate
  • 5.4 Pros and Cons of Depolymerization Methods
  • 5.5 History of Feedstock Recycling Techniques From a Standpoint of Patents
  • 5.6 Representative Chemical Recycling Processes Based on Methanolysis and Hydrolysis
  • 5.6.1 Eastman Kodak Process
  • 5.6.2 Teijin Process
  • 5.6.3 Mitsubishi Process
  • 5.6.4 Chungnam National University Process
  • 5.7 Conclusions
  • References
  • 6 Chemical Depolymerization of PET Bottles via Ammonolysis and Aminolysis
  • 6.1 Introduction
  • 6.2 Aminolysis
  • 6.3 Ammonolysis
  • 6.4 Conclusion
  • References
  • 7 Chemical Depolymerization of PET Bottles via Combined Chemolysis Methods
  • 7.1 Introduction
  • 7.2 Various Chemolysis Processes
  • 7.2.1 Methanolysis Process
  • 7.2.2 Hydrolysis Process
  • 7.2.3 Glycolysis Process
  • 7.2.4 Aminolysis Process
  • 7.2.5 Commercial Viability
  • 7.3 Combined Chemolysis Process
  • 7.3.1 Glycolysis-Hydrolysis.
  • 7.3.2 Glycolysis-Methanolysis
  • 7.3.3 Methanolysis-Hydrolysis
  • 7.3.4 Glycolysis-Aminolysis
  • 7.4 Advantages and Disadvantages of Combined Chemolysis
  • 7.5 Summary of Products From Chemolysis
  • 7.6 Conclusion
  • References
  • 8 Life Cycle Assessment (LCA) of PET Bottles
  • 8.1 Goal Definition Scope
  • 8.1.1 Background
  • 8.1.2 Introduction
  • 8.1.3 Purpose
  • 8.1.4 Previous Research
  • 8.1.5 Market Trends
  • 8.1.6 Need for the Project
  • 8.1.7 Targeted Audience and Use of the Study Product System
  • 8.1.8 Functional Unit
  • 8.1.9 Assessment Boundaries
  • 8.1.10 General Exclusions
  • 8.2 Life Cycle Inventory
  • 8.2.1 General Methodology
  • 8.2.2 Upstream and Downstream Life Cycle Methodology
  • 8.2.3 Manufacturing Stage
  • 8.2.4 Product Usage and Recycling Stage
  • 8.2.5 Life Cycle Inventory Limitations and Uncertainties
  • 8.3 Life Cycle Impact Assessment
  • 8.3.1 Top Contributors
  • 8.3.2 Sensitivity Analysis
  • 8.4 Qualitative Risk Screening of Selected Chemicals
  • 8.5 Conclusions and Suggestions
  • References
  • 9 Applications of Waste Poly(Ethylene Terephthalate) Bottles
  • 9.1 Introduction
  • 9.2 PET Bottles-Fiber-Fabric
  • 9.3 PET Bottles-Resins for Coatings and Recycled Polymer Composites
  • 9.4 Coating Applications
  • 9.4.1 Epoxy Resins
  • 9.4.2 Polyurethane Dispersions
  • 9.4.3 Alkyd Resins
  • 9.5 Microfibrillar Polymer Composites
  • References
  • Index
  • Back Cover.